Influence of Graphene Oxide on AC-conduction of Hematite Nanoparticles

Muhammad Mumtaz1, Mubasher1*, Muhammad Ali1, Syed Rizwan Hussain2, Muhammad Irshad Khan1

1 Department of Physics, Faculty of Basic and Applied Sciences (FBAS), International Islamic University (IIU), H10, 44000, Islamabad, Pakistan
2 Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), H12, 44000, Islamabad, Pakistan

The chemical sol-gel method was opted for the preparation of hematite (α-Fe$_2$O$_3$) nanoparticles. The nanohybrids of graphene oxide (GO) nanosheets and α-Fe$_2$O$_3$ nanoparticles {i.e. (GO)$_x$/α-Fe$_2$O$_3$; $x = 0, 0.5, 1.0$ and 1.5 wt.-%} were synthesized using two-step ultra-sonication method. The dispersion of GO and α-Fe$_2$O$_3$ nanoparticles was done using Toluene for the preparation of (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids. The crystal structure, surface morphology and vibrational modes of these nanohybrids were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. XRD spectra confirmed the phase formation and rhombohedral crystal structure of (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids. The SEM images displayed that α-Fe$_2$O$_3$ nanoparticles were successfully dispersed over GO nanosheets. FTIR spectra showed two transmittance bands at 464 cm$^{-1}$ and 537 cm$^{-1}$ correspond to Fe-O bond. LCR meter was used for the acquisition of frequency-dependent dielectric and impedance measurements of the samples. The variation in frequency-dependent dielectric and impedance properties was observed as GO nanosheets were hybridized with α-Fe$_2$O$_3$ nanoparticles. Furthermore, the advancement in dielectric and impedance properties give evidence that the synthesized (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids could be worthy useful for high frequency devices and energy storage appliances.

Keywords: Toluene, Dielectric and impedance properties, (GO)$_x$/α-Fe2O3, Ultra-sonication

INTRODUCTION

The energy storage systems are experiencing remarkable improvement in order to be used to run electric trains, electric vehicles and ultimately for power grid. The demands of material with highly optimized energy storage properties practiced substantial increase that led to extensive research on manipulation and optimization of different properties like charge storage, charge mobility and impedance of the materials. Iron oxide is one of the most diverse materials with sixteen different types of oxide and hydroxide phases known to date. Hematite, maghemite and magnetite are the most prominent and commonly known phases of iron oxide. The presence of octahedral or
tetrahedral lattice sites in the crystal structure is a common feature of these three phases of iron oxide. The crystal structure of iron oxide can be explained in terms of the presence of iron cations on octahedral or tetrahedral interstitial sites and oxygen anions as closed packed planes. Hematite (α-Fe$_2$O$_3$) is one of the most stable phase of iron oxide that has hexagonal close packed arrangement of oxygen ions with Fe(III) ions occupying the octahedral sites. The α-Fe$_2$O$_3$ became important material technologically because of its low cost, high stability and n-type semiconducting nature at ambient condition. The α-Fe$_2$O$_3$ shows interesting magnetic properties as it has paramagnetic nature above Curie temperature (956 K) and it remains weakly ferromagnetic on decreasing temperature from 956 K to 260 K. The α-Fe$_2$O$_3$ becomes antiferromagnetic at temperatures below 260 K. In last few decades, enormous efforts have been made to achieve the lowest possible scale for the fabrication of materials and their analysis due to emergence of striking properties with the decrease in size. The synthesis of nanostructured materials with fine size and required morphologies has always been a challenging task, especially using synthesis techniques like grinding, press and heating powder. The synthesis approaches such as freeze drying, high energy milling and copolymer synthesis are employed to achieve nanoscale morphologies. Despite of enormous research on the synthesis techniques of nanomaterials, there are very few synthesis routes which are low cost and easily approachable with control over size and shape. Pertaining to the controlled size and shape, low cost chemical methods like sol-gel, co-precipitation and hydrothermal methods have proven to be successful especially for the synthesis different phases of iron oxide.

Different properties of α-Fe$_2$O$_3$ nanoparticles such as non-toxicity, low-cost, bio-degradability and higher stability can be used for numerous potential applications. The extensive research has been carried out on α-Fe$_2$O$_3$ nanoparticles for its potential use in applications like gas sensors, miniaturized connectors, catalysts, energy storage devices, magnetic devices, and drug delivery. In order to find the potential applications of α-Fe$_2$O$_3$ in electronic and electrical systems as well as energy storage devices, the study of dielectric properties and impedance analysis is crucial as it gives insight about charge storage, charge mobility, resistance and reactance. The dielectric permittivity and impedance depend on many factors including phase purity, particle size and shape, charge density, temperature and pressure. The researchers are also trying to optimize the properties of α-Fe$_2$O$_3$ and other phases of iron oxide through diversifying manipulation and fabrication techniques. The dielectric measurements and complex impedance spectroscopy of α-Fe$_2$O$_3$ prepared by two different methods were performed. It was concluded that α-Fe$_2$O$_3$ nanoparticles synthesized by precipitation method exhibited better dielectric permittivity and relaxation phenomenon. Mechanical and dielectric properties were found increasing for the composites of epoxy and rGO/iron oxide. Mono-dispersed nanocomposites of α-Fe$_2$O$_3$ with rGO were fabricated for the enhancement in wave absorption properties. The significant increase in the values of complex permittivity (ε) was observed for these nanocomposites that indicated excellent wave absorption properties. Furthermore, the dielectric study of α-Fe$_2$O$_3$ nanoparticles indicated their potential applications in microwave application due to their low values of loss tangent.

In present study, the (GO)$_x$/α-Fe$_2$O$_3$; $x=0, 0.5, 1.0$, and 1.5 wt.% nanohybrids were synthesized by two-step ultra-sonication assisted route. Early-on, a simple and high-yield sol-gel method was used for the synthesis of α-Fe$_2$O$_3$ nanoparticles. The α-Fe$_2$O$_3$ nanoparticles and GO nanosheets were dispersed using a dispersible medium (Toluene) for these nanohybrids. The dielectric and complex impedance spectroscopic analysis response of these (GO)$_x$/α-Fe$_2$O$_3$; $x=0, 0.5, 1.0$, and 1.5 wt.% nanohybrids can guide the audience for selection of material for better energy storage devices at room temperature.

EXPERIMENTAL SETUP

To prepare α-Fe$_2$O$_3$ nanoparticles, iron nitrate (Fe(NO$_3$)$_3$.9H$_2$O) and citric acid (C$_6$H$_8$O$_7$.H$_2$O) were taken in stoichiometric proportion and prepared two separate solutions of both precursors. The iron nitrate was dissolved in ethanol and citric acid in distilled water with a molar ratio of 1:1, and these two solutions were homogeneously mixed by stirring. To get main solution, second solution was added in the first solution drop wise. Ammonia was added carefully in the solution for adjustment of pH at 5. In the next step, the solution was heated at 80°C for the gel formation and the solution was continuously stirred during the process. After gel formation, the sample was immediately placed in microwave oven at 100°C for 12 h for drying. The sample was ground to get fine powder after it was removed from oven and placed in furnace in subsequent step at 500°C for 4 h of annealing to get required α-Fe$_2$O$_3$ nanoparticles. The hybridization of α-Fe$_2$O$_3$ with GO was carried out by ultra-sonication method. The preparation of nanohybrids was started by taking calculated amounts of α-Fe$_2$O$_3$ and GO in 50 ml of toluene, separately. Both solutions were first sonicated for 2 h using ultra-bath sonicator for uniform dispersion and then mixed. The resulting mixture was again sonicated for 6 h to disperse GO in α-Fe$_2$O$_3$ homogeneously and dried for 12 h at 100°C. The product is then subjected to annealing treatment for 1.5 h at 150°C. After annealing, the prod-
uct was again mixed mechanically to get (GO)$_x$/α-Fe_2O_3; $x = 0, 0.5, 1.0,$ and 1.5 wt.% nanohybrids. The phase confirmation, purity and crystal structure of (GO)$_x$/α-Fe_2O_3 nanohybrids were determined by using XRD technique Model D/Max IIIC Rigaku with CuK source of wavelength 1.54056 Å. The SEM Model TESCANVEGA 3 with LaB6 filaments was used for morphological analysis. FTIR was employed for optical measurements from 400 cm$^{-1}$ to 700 cm$^{-1}$ range using Perkin Elmer Spectrum spectrometer. LCR meter Model Hewlett-Packard 4294A, was used for dielectric and impedance measurements in the frequency range 1 kHz to 2 MHz at room temperature.

RESULTS AND DISCUSSION

X-Ray Diffraction (XRD)

The crystallographic and phase confirmation studies of (GO)$_x$/α-Fe_2O_3 nanohybrids were carried out by XRD. Fig. 1a shows the representative XRD spectra of (GO)$_x$/α-Fe_2O_3; $x = 0,$ and 1.5 wt.% nanohybrids. All the peaks observed in XRD spectra of bare α-Fe_2O_3 nanoparticles are in well agreement with rhomboedral crystal structure of α-Fe_2O_3 (JCPDS Card No. 00-024-0072). The diffraction peaks corresponding to the crystallographic planes (012), (104), (110), (113), (024), (116), (214) and (300) were found at 24°, 33°, 36°, 41°, 49.6°, 54.0°, 62.5°, and 64.1°, respectively, as shown in Fig. 1. It is evident for XRD spectra that the α-Fe_2O_3 nanoparticles showed high purity and excellent crystallinity. In addition, the crystallite size of α-Fe_2O_3 nanoparticles was calculated by Debye-Scherrer formula and was found to be around 38 nm31. The GO nanosheets did not affect the crystal structure of α-Fe_2O_3 nanoparticles as (GO)$_x$/α-Fe_2O_3 nanohybrids showed identical XRD spectra as that of pure α-Fe_2O_3 nanoparticles. Moreover, the GO nanosheet peaks are not observed in XRD spectra due to lower concentrations and minimal stacking of GO nanosheets32.

Fourier Transformed Infrared Spectroscopy (FTIR)

The vibrational modes present in (GO)$_x$/α-Fe_2O_3 nanohybrids were investigated by FTIR spectroscopy. Fig. 1b shows the representative FTIR spectra of (GO)$_x$/α-Fe_2O_3; $x = 0,$ and 1.5 wt. % nanohybrids in the range from 400 cm$^{-1}$ to 900 cm$^{-1}$. FTIR verified the purity of α-Fe_2O_3 nanoparticles as the present vibrational modes entirely correspond to α-Fe_2O_3 and none of the bands are allocated to any impurity. In general, ferrites and other phases of iron oxide gave two separate bands for same Fe-O bond. These bands attributed to tetrahedral and octahedral lattice sites are observed32,33. GO nanosheets did not show any significant effect on FTIR spectra of nanohybrids due to their low concentration.

Scanning Electron Microscopy (SEM)

The scanning electron microscopy (SEM) was utilized for morphological investigations of bare α-Fe_2O_3 nanoparticles and (GO)$_x$/α-Fe_2O_3 nanohybrids. The SEM images of α-Fe_2O_3 nanoparticles, GO nanosheets and (GO)$_x$/α-Fe_2O_3; $x = 1.5$ wt.% nanohybrid are shown in Fig. 2 (a-c). These SEM images confirmed the production of bare α-Fe_2O_3 nanoparticles. Few agglomerations were also observed in SEM image of α-Fe_2O_3 nanoparticles. The shape and size of α-Fe_2O_3 nanoparticles was not uniform though the nanostructures with flakes like shape were clearly seen in SEM images. The annealing temperature of α-Fe_2O_3 nanoparticles can be the one of the possible reasons for the non-uniform size distribution as well as agglomeration and segregation of these α-Fe_2O_3 nanoparticles. The SEM images of 2-dimensional GO nanosheets is presented in Fig. 2(b). The representative SEM image of (GO)$_x$/α-Fe_2O_3; $x = 1.5$ wt.% nanohybrid is shown in Fig. 2(c). These SEM images showed that α-Fe_2O_3 nanoparticles are evenly distributed on crumpled nanosheets of GO. Furthermore, a non-uniform and non-close packing of these (GO)$_x$/α-Fe_2O_3 nanohybrids were also observed due to combination of two different morphologies.

Dielectric Properties

The dielectric properties of (GO)$_x$/α-Fe_2O_3; $x = 0, 0.5, 1.0,$ and 1.5 wt. % nanohybrids were studied at room temperature in frequency range from 1 kHz to 2 MHz. The dielectric parameters including real part (ε'_r), imaginary parts (ε''_r), tangent loss (tanδ) and AC-conductivity (σ_{ac}) were calculated using standard mathematical relations31,34. When a material is placed between the plates of a capacitor in order to subject it to external electric field, it stores energy in the form of electric polarization. The energy stored in a dielectric is referred as real part of dielectric constant and denoted by ε'_r.7 Fig. 3a shows the variation in ε'_r as a function of frequency f (Hz). The dielectric response of iron oxide or ferrites is typically interpreted with the help of Koops’ theory and Maxwell-Wagner model34. The polycrystalline materials comprised of grains and grain-boundaries. The grains have periodic arrangement of atoms in accordance with crystal structure of the material, whereas, grain-boundaries are considered as defects in crystal structure or disturbance in periodic arrangement of atoms. The conductive grains generally facilitate the flux of charges in a material, while the grain-boundaries hinder the motion of charges35. At low frequency, electrons flow through grains by hopping mechanism across Fe$^{+2}$
and Fe$^{3+}$ sites and got stuck and piled up across the grain-boundaries, where they cause space charge polarization resulting in higher values of ε_r' at low frequency36. At higher frequency, the electron exchange between Fe$^{2+}$ and Fe$^{3+}$ cannot follow the rapid change in AC-field due to lesser relaxation time. The large decline in ε_r' was observed at higher frequency as the space charges and dipoles need large time to align themselves with the high electric AC-field. When the applied frequency is further increased, the frequency of the electrons does not coincide with it, consequently, electrons stopped responding and give minimum values of ε_r' 37.

Maximum values of ε_r' for (GO)$_x/$α-Fe$_2$O$_3; x = 0, 0.5, 1.0,$ and 1.5 nanohybrids were found to be 26.91, 6.03, 13.79, and 8.05, respectively at 1 kHz. These results illustrate that values of ε_r' decreased as GO is hybridized with α-Fe$_2$O$_3$ nanoparticles.

As GO have strong chemical bonding and there are small number defects to hinder the hopping of charge carriers and their piling at grain-boundaries resulting in reduced interfacial and dipolar polarizations38. As a result, ε_r' is smaller for (GO)$_x/$α-Fe$_2$O$_3$ nanohybrids than bare α-Fe$_2$O$_3$ nanoparticles. Energy loss in a dielectric material due to free charge carriers gives imaginary part of dielectric constant commonly denoted by ε_r''. Fig. 3b represents the plots of ε_r'' against f (Hz) for (GO)$_x/$α-Fe$_2$O$_3; x = 0, 0.5, 1.0,$ and 1.5 wt.% nanohybrids. These plots demonstrate that ε_r'' is high at low frequency and shows a decreasing trend with increasing frequency. The hopping of charges across Fe$^{2+}$ and Fe$^{3+}$ sites get higher at low frequencies due to high relaxation time of AC-field. The charges flow through grains due to hopping mechanism and piled up at grain-boundaries35,36. The losses of energy get higher due to highly resistive nature of grain-boundaries. Moreover, at low frequency other forms
of polarizations are also active, which result in increase in the mobility of charges. For instance, in case of dipolar polarization, dipoles align themselves according to applied AC-field and they change their orientation frequently, which leads to more losses, so ε'' shows maximum values at low frequency. At high frequency, charge carriers do not get enough energy and time for mobility to reach at grain-boundaries as result ε'' is decreased at higher frequency. Maximum values of ε'' for (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids at $x = 0, 0.5, 1.0, and 1.5$ were found to be $72.85, 2.02, 3.16, and 16.47$, respectively at 1 kHz. It is clearly observed that (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids have lesser values of ε'' as compared to α-Fe$_2$O$_3$ nanoparticles due to the strong chemical bonding in GO, which can hinder the alignment of dipoles according to applied AC-field. Also, the piling of electron get reduced due to presence of GO at grain-boundaries, thus reduction in energy losses was observed.

The fractional losses in energy in a dielectric material is known as dielectric loss tangent and is denoted by $\tan\delta$. Fig. 4a shows the change in $\tan\delta$ of (GO)$_x$/α-Fe$_2$O$_3$; $x = 0, 0.5, 1.0, and 1.5$ wt.% nanohybrids with f (Hz). A declining trend with rising frequency was observed in $\tan\delta$ that can be attributed to high resistance offered by grain-boundaries, which are more active at low frequency. The hopping of carriers becomes more difficult due to high resistance and more energy get consumed, which can enhance the losses in the materials. Maximum values of $\tan\delta$ for (GO)$_x$/α-Fe$_2$O$_3$; $x = 0, 0.5, 1.0, and 1.5$ wt.% nanohybrids were found to be $2.71, 0.35, 2.11, and 1.74$, respectively at 1 kHz. These values indicate that hybridization of GO with α-Fe$_2$O$_3$ has decreased $\tan\delta$. The lesser vacancy defects of GO hinder the hopping of charge carriers, which result in smaller losses, as a result smaller values of $\tan\delta$ were obtained for (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids. AC-conductivity (σ_{ac}) in dielectric materials arise due flow of charges as a result of applied external electric AC-field. In iron oxide and ferrite nanoparticles, conductance of charges occurs due to hopping mechanism across Fe$^{3+}$ and Fe$^{3+}$ lattice sites.

The possibility of hopping of charge carriers across alternating tetrahedral (A-site) and octahedral (B-site) is less as compared to same B-B sites due to smaller distance between them. As a consequence of existence of hopping of electrons across octahedral lattice sites, conductance of charges is also present in α-Fe$_2$O$_3$ nanoparticles. The σ_{ac} of (GO)$_x$/α-Fe$_2$O$_3$; $x = 0, 0.5, 1.0, and 1.5$ wt.% nanohybrids with varying f (Hz) is shown in Fig. 4b. The trend of σ_{ac} was increasing with increasing values of f (Hz). The mobility of charges is enhanced especially at octahedral sites at high frequency. The conducting grains become more active at high frequency according to Koop’s theory, so increasing trend of σ_{ac} was observed with increasing frequency. Maximum values of σ_{ac} for (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids at $x = 0, 0.5, 1.0, and 1.5$ were found to be 7.38×10^{-5} S·m$^{-1}$, 1.54×10^{-5} S·m$^{-1}$, 5.56×10^{-5} S·m$^{-1}$, and 3.11×10^{-5} S·m$^{-1}$, respectively at 2 MHz. It can be seen that α-Fe$_2$O$_3$ nanoparticles have high values of σ_{ac} than (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids. The
dominant factor behind AC-conduction in α-Fe$_2$O$_3$ is hopping mechanism but the band conduction is dominant in GO for which presence of electrons in conduction band is necessary. As GO do not support hopping conduction because it does not have divalent and trivalent lattice sites like iron oxide (Fe$^{2+}$ and Fe$^{3+}$), so addition of GO suppressed the σ_{ac} at high frequency.

Complex Impedance Spectroscopy (CIS)

Complex impedance spectroscopy (CIS) is an important technique that is employed to study the electronic conductivity and relaxation processes in complex inhomogeneous materials. It can be used to calculate the overall resistance offered by a polycrystalline material as well as to discriminate the contributions of grains and grain-boundaries in overall resistance. From Nyquist plot of CIS, the contribution of grains and grain-boundaries in resistivity of the materials can be determined. The combined resistance of a polycrystalline material is given by $R = R_{gb} + R_g$. Thus, CIS can be used for determination and discrimination of the contribution of both grains and grain-boundaries resistances in electrical transport properties.\(^{41-43}\)

The variation in real part of impedance (Z_r) with frequency is shown in Fig. 5a. The graph illustrates that with the increasing frequency, the Z_r shows a decreasing trend and becomes saturated with further increase in frequency. At low frequency, highly resistive grain-boundaries are more dominant, where charge carriers get trapped, so high values of Z_r are observed.\(^{44}\) But the increasing frequency results in dominance of lesser resistive grains. The charge carriers flow through the grains due to hopping mechanism between Fe$^{2+}$ and Fe$^{3+}$, so, Z_r shows a decreasing trend at higher frequencies. The maximum values of Z_r are $9.12 \times 10^6 \, \Omega$, $1.13 \times 10^7 \, \Omega$, $1.44 \times 10^7 \, \Omega$, and $1.71 \times 10^7 \, \Omega$ at 1 kHz for (GO)$_x$/a-α-Fe$_2$O$_3$; $x = 0$, 0.5, 1.0, and 1.5 wt.% nanohybrids, respectively. The hybridization of α-Fe$_2$O$_3$ with GO resulted in enhancement of Z_r in (GO)$_x$/a-α-Fe$_2$O$_3$ nanohybrids. The enhancement in Z_r can be attributed to the decrease in availability of lattice sites for hopping of charges as GO generally does not support the hopping conduction.

Fig. 5b shows the variation in imaginary part of impedance (Z_i) with frequency. The Z_i also showed high values at lower frequency and it decreased gradually on increasing frequency. High values of Z_i at lower frequency were due to higher relaxation time. Generally, Z_i plots show the peaks in low frequency that indicate the presence of dielectric relaxation phenomenon. For the demonstration of peaks in this case, the plots for Z_i can be extrapolated towards lower frequency and mobility of charge carriers occur in region below frequency range of peaks. The dispersion in peaks was also observed, which can be attributed to different relaxation behaviors of different samples. The maximum values of Z_i were $-9.51 \times 10^6 \, \Omega$, $-2.71 \times 10^7 \, \Omega$, $-3.39 \times 10^7 \, \Omega$, and $-4.44 \times 10^7 \, \Omega$ for (GO)$_x$/a-α-Fe$_2$O$_3$; $x = 0$, 0.5, 1.0, and 1.5 wt.% nanohybrids, respectively.
The Nyquist plots \((Z'/Z')\) for (GO)\(x/\alpha-\text{Fe}_2\text{O}_3; x = 0, 0.5, 1.0,\) and 1.5 wt.% nanohybrids gave a semielliptical (prolonged semicircle) shape, as shown in Fig. 6, indicate the non-Debye type relaxations. The appearance of single semicircle for each sample is attributed to resistive phenomenon raised from enhanced grain-boundaries’ effect \(^{45}\). The grain’s resistance \((R_g)\) and grain-boundaries’ resistance \((R_{gb})\) were obtained from \(Z'/Z\) axis of the Nyquist plots. The \(R_g\) values were found to be \(7.53\times10^6\) Ω, \(1.20\times10^6\) Ω, \(1.74\times10^7\) Ω, and \(1.71\times10^7\) Ω, whereas, \(R_{gb}\) values were \(9.44\times10^3\) Ω, \(2.34\times10^3\) Ω, \(6.92\times10^3\) Ω, and \(7.44\times10^3\) Ω for (GO)\(x/\alpha-\text{Fe}_2\text{O}_3; x = 0, 0.5, 1.0,\) and 1.5 wt.% nanohybrids, respectively. \(R_g\) did not show as much change in resistance as \(R_{gb}\) with the hybridization of GO with \(\alpha-\text{Fe}_2\text{O}_3\) nanoparticles, while \(R_{gb}\) was enhanced significantly for (GO)\(x/\alpha-\text{Fe}_2\text{O}_3\) nanohybrids with the addition of GO. This shows that two dimensional GO nanosheets that were present on the grain-boundaries did not allow the electron hopping. Therefore, the study helps to find out the best candidate for the fabrication of nanohybrids as anode material for batteries on the basis of dielectric properties i.e. charge storage as well as
charge conduction phenomena.

CONCLUSIONS

The preparation of (GO)$_x$/α-Fe$_2$O$_3$; $x = 0, 0.5, 1.0,$ and 1.5 wt.% nanohybrids was abled by using two-step synthesis route. Primarily, the chemical sol gel method was employed for the synthesis of α-Fe$_2$O$_3$ nanoparticles, and then ultrasonic-assisted route was used for hybridization of α-Fe$_2$O$_3$ nanoparticles on GO nanosheets, using a polar dispersive medium “Toluene.” No impurities were appeared in the XRD spectra of (GO)$_x$/α-Fe$_2$O$_3$ nanohybrids which authenticate the successful utilization of synthesis route. The complete dispersion of α-Fe$_2$O$_3$ nanoparticles over GO nanosheets was confirmed from SEM images. In FTIR, the relative absorbance was investigated direct the audience for the investigation of α-Fe$_2$O$_3$ nanoparticles on GO nanosheets, using a polar dispersive medium “Toluene.”

References

9) Sun, B.; Horvat, J.; Kim, H. S.; Kim, W.-S.; Ahn, J.; Wang, G. Synthesis of mesoporous \(\alpha \)-Fe$_2$O$_3$ nanostuctures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. The Journal of Physical Chemistry C 2010, 114 (44), DOI: 10.1021/jp100229e.

16) Sun, L.; Han, X.; Liu, K.; Yin, S.; Chen, Q.; Kuang, Q.; Han, X.; Xie, Z.; Wang, C. Template-free construction of hollow \(\alpha \)-Fe$_2$O$_3$ hexagonal nanocolumn par-
Materials Innovations 2022 | https://materialsinnovations.hexapb.com/

