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Polymer dielectric possess advantages of mechanical flexibility, low temperature
processing, and cost. However, for prac cal applica ons dielectric constant of
polymers is not high enough. To raise the dielectric constant, polymers are
o en composited with fillers of various morphologies (one-dimensional, two-
dimensional, three-dimensional) and types (inorganic, organic, carbon, conduc ve,
non-conduc ve). Recently discovered two-dimensional (2D) materials including
graphene, transi on metal dichalcogenides, MXenes, ferroelectric ceramics, etc.
have been discovered. These materials have excellent electrical, mechanical,
thermal proper es and high specific surface area, which makes these ideal
materials to reinforce the proper es of polymers, especially dielectric proper es.
Here, in this review we summarize the latest developments regarding the use
of 2D fillers to improve the dielectric proper es of polymer composites. We
have systema cally discussed synthesis of 2D materials, processing of their
2D filler/polymer composites, theore cal background of dielectric proper es of
these composites, and literature summary of the dielectric proper es of polymer
composites with various type of 2D fillers.
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INTRODUCTION

Among all the passive components
(resistor, capacitors, and induc-
tors), Capacitors call for special

attention due to their applications in fil-
tering, timing, A/D conversion, termi-
nation, decoupling, and energy storage
materials. Dielectric materials are gen-
erally used for capacitor applications.
Traditionally, inorganic materials have
been used as the dielectric materials for
energy conversion and storage. How-

ever, high temperature processing and
mechanical brittleness have led to devel-
opments of alternate materials. Polymers
are interesting dielectric materials due to
their low temperature solution process-
ing, low cast, large area processing, envi-
ronmental stability, and mechanical flex-
ibility. Due to these set of properties,
50% of market share belong to poly-
mer based capacitors (Figure 1)1. Apart
from electronic industry, high-k poly mer
dielectrics have found many applications
in civilian and military applications
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including active vibration control,
aerospace, underwater navigation and
surveillance, hydrophones, biomedi-
cal imaging, non-destructive testing
and air imaging microphones. High-
k poly mer dielectrics have also been
used as electromechanical devices to
perform energy conversion between
the electric and mechanical forms.
These devices serve as artificial mus-
cles, smart skins for drag reduction,
actuators for active noise and vibration
controls, and microfluidic systems for
drug delivery and micro-reactors.2−4

One of the most commonly used
dielectric polymers is polypropy-
lene (PP), which has high breakdown
strength (Eb) (>700 V/m), low dielec-
tric loss (<0.02%), and temperature-
and frequency-independent dielec-
tric constant with good mechani-
cal strength. However, it has a low
dielectric constant (k = 2.2), impeding
widespread applications.5,6 Some high
dielectric constant polymers such as
PVDF and its co-polymers have been
fabricated which possess dielectric
constant as high as 50.7 But still their
dielectric constant is lower compared
to dielectric ceramics. To improve the
dielectric constant of polymers, fillers
are successfully introduced into these
polymers to raise their dielectric con-
stants or electrical conductivity. These
fillers include organic, metals, ceram-
ics, and carbon based fillers.8−20

Recently, a new class of materi-
als, i.e., two-dimensional (2D) materi-
als have been discovered. 2D mate-
rials have fascinating mechanical,
thermal, and electrical properties,
which are suitable for variety of
applications.21−31 Examples of 2D
materials Include graphene (Gr), transi-
tion metal dichalcogenides (TMDCs),
Mxenes, boron nitride (h-BN), black
phosphorous (BP), etc. Family of 2D
materials is growing fast and thousands
of 2D materials have been predicted
theoretically, while hundreds can be
synthesized experimentally. Due to
their high surface area, these materi-
als are also very useful for the poly-

mer composite application as they can
interface with polymers more effec-
tively for improvement of mechanical,
electrical, and thermal properties.32,33

Recently, there has been a great inter-
est in 2D-filler based polymer dielec-
tric composites.34−36 In this review,
we will summarize the latest develop-
ments related to use of 2D materials
for polymer composites for dielectric
applications.

SYNTHESIS OF 2D
MATERIALS
2D materials can be synthesized by
mechanical exfoliation, chemical vapor
deposition (CVD), and wet chemical
synthesis. Mechanical exfoliation is not
scalable hence not suitable for the poly-
mer composites. CVD growth was ini-
tially use for electronics applications,
but recently, significant developments
have been made for large scale growth
and transfer of CVDgrowth, which ren-
der CVD grown 2D materials suitable
for polymer composite applications.37

Perhaps, the best 2D materials growth
route for polymer composites appli-
cation is wet chemistry, which can
produce ton scale 2D materials at a
low cost. However, quality of materials
grown with wet chemistry is inferior to
CVD grown materials. Below, we will
summarize the synthesis techniques of
2D materials for the polymer compos-
ites applications.

Liquid phase synthesis
Liquid phase synthesis can be further
divided into categories such as simple
exfoliation, intercalation exfoliation
and functionalization based exfolia-
tion of 2D materials from bulk lay-
ered materials. Bulk layered materi-
als have week van der Waals forces
between layers, hence layered materi-
als can be simply exfoliated by using
external mechanical forces such as
ultra-sonication in suitable solvent. A
suitable solvent should have a match-
ing surface tension with the solvent

material. For example, exfoliation of
graphite needs a solvent with sur-
face tension of 40 mJ/m2.38 How-
ever, surface tension values can be
fine-tuned using surfactants or/and
by adding other solvents.39,40 Vari-
ety of 2D materials including molyb-
denum sulfide (MoS2), boron nitride
(BN), tungsten sulfide (WS2), tin
sulfide (SnS), black phosphorous
(BP), molybdenum selenide (MoSe2),
etc., in various solvents such as N-
methyl-pyrrolidone (NMP), acetone,
N, N-dimethylformamide (DMF),
N-vinyl-pyrrolidinone (NVP), iso-
propanol (IPA), and dimethylsulphox-
ide (DMSO).31,38,41,42 For exam-
ple, shear mixing/ultra-sonication of
graphite in NMP yielded high qual-
ity Gr with ID/IG ratio between 0.1 to
0.4.38,43 There are certain advantages
and disadvantages of using exfolia-
tion techniques for 2D materials syn-
thesis. Exfoliation produces materials
with fewer defects, however, yield of
monolayer is low. Moreover, absence
of any functional groups on exfoli-
ated 2D materials lead to poor inter-
action between polymer and 2D mate-
rials. Size of exfoliated 2D sheets can
vary with force. Sheer mixing produce
sheets with size in few micrometers,
while ultra-sonication produces sheets
with size less than 1micrometer. Liquid
exfoliation can be improved with oxi-
dation/functionalization of 2D materi-
als, but can impart significant defects to
basal plane of 2D materials. For exam-
ple, strong oxidizing agents such as
KMnO4/KClO4 and H2SO4/HNO3,are
used to oxidize the graphite surface,
this oxidized graphite then can be
dispersed in polar solvents to exfoli-
ate graphite into Gr sheets (Hummer
method)44. Sonication may be further
required to facilitate the exfoliation of
Gr in the polar solvents. Other 2Dmate-
rials such as BN, MoS2, WS2 have also
been synthesized by using this method
or its modifications.45,46 A large sheet
size can be obtained using this method,
which leads to formation of liquid crys-
tal.
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Figure 1. Market share of different materials based capacitors.1

Another way to achieve the exfo-
liation at milder conditions, interca-
lation of the layered material is a
preferred route. For example, lithium
intercalation is widely used for exfo-
liation of MoS2. A typical procedure
involves immersing the bulk MoS2 in
n-butyl lithium (n-BuLi)/hexane solu-
tion for few days, which help interca-
lates the lithium ions between the lay-
ers of MoS2.47 This intercalated com-
pound is subsequently transferred to
the water, where production of gaseous
products helps exfoliate theMoS2. This
process can be improved by modify-
ing the procedure and changing the
chemical reagents. For example, elec-
trochemical intercalation process can
also be employed to obtain Li interca-
lated compounds, which significantly
reduce the intercalation time for days
to hours.48,49 Similarly, solvothermal
reaction was exploited for intercala-
tion of n-BuLi at 100 ◦C in bulk
TaS2. Due to energy provided by

high temperature, the intercalation of
Li+ was achieved in much shorter
time (2 h).50 Monolayer of TaS2 was
obtained with mere mechanical shak-
ing of lithinated bulk TaS2 Figure
3(a & b). Other 2D materials such
as WS2

51, MoSe2
52 have also been

obtained by using this method. How-
ever, this method has certain disad-
vantages. For example, 2D materi-
als obtained through this method are
metallic and extra heating step is
required to restore the semiconduct-
ing properties of obtained 2Dmaterials.
Moreover, Li is a flammable material
and monolayer yield is also low.

CVD Synthesis of 2D materials
Compared to liquid exfoliation, CVD
is a bottom up synthesis methods. In
a typical CVD method, a metal sub-
strate is exposed to a volatile precur-
sor, which decomposes/reacts on the
metal surface to produce a 2D materi-
als. Various metal substrates including

Cu, Ni, SiO2 have been used. Choiceof
the precursor (metallic or non-metallic)
depends on the final composition of the
2D material. Using CVD, elementary,
binary, tertiary or even quaternary and
quinary compounds have been fabri-
cated. Gas flow, temperature and pre-
cursors controls the quality of the 2D
materials. Summary of key parameters
for CVD growth of 2D materials is
described in Figure 4. Recently, Zhou
et al.53 have demonstrated a molten-
salt-assisted CVDmethodwhich can be
applied for the synthesis of a wide vari-
ety of 2D (atomically thin) materials.
Crystal size and quality of the materi-
als can be easily controlled by flow of
metal (Figure 4). They successfully

demonstrated the synthesis of 47
compounds (including 32 binary, 11
ternary, one quaternary, one quinary,
and two heterostructured compounds),
see Figure 6. While CVD growth can
produce variety of 2D materials with
high quality, however, this method is
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Figure 2. (a) Schematics showing three types of solvent-based exfoliation techniques.35 Reproduced with permission from ref.
35. Copyright (2021) Elsevier.

Figure 3. (a) Schematic illustration for the manual shaking exfoliation process of partiallylithiated LixMX2 into single layers.
(b) Optical microscopy image of exfoliated single-layer TaS2 nanosheets on a SiO2/Si substrate.50 Reproduced with permission
from ref. 50. Copyright (2017) American Chemical Society.
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Figure 4. Schematic of the key parameters for the CVD growth of 2Dmaterials ranging from elementary substance, binary, and
ternary to complicated materials.54 Reproduced with permission from ref. 54. Copyright (2020) American Chemical Society.

not scalable for all the 2D materials.
Only handful of 2D materials can be
produced on large scale. Apart from
large scale production, large scale auto-
matic transfer of CVD grown 2D mate-
rials is also another issue. CVD grown
materials need to be transferred from
growth substrate to desired substrate
which involves exposure to chemicals,
which can induce lot of impurities dur-
ing the process. For Gr, roll-to-roll, and
batch–to–batch industrial scale produc-
tion has already been demonstrated.
Also scalable transfer methods have
been implemented for Gr.37 However,
for other 2D materials, large scale pro-
duction and transfer is still a challenge.

PROCESSING OF
2D-FILLER/POLYMER
COMPOSITES
Polymers can be mixed with 2D mate-
rials with direct compounding, melt
compounding, solution mixing or in-
situ polymerization. Direct compound-
ing involved direct missing of both
solids (polymer and filler) and subse-
quently hot pressed to obtain final com-
posites. This method is easy but dis-
persion and homogeneity of the mix-
ture may not be ideal and is seldom
used. In melt processing, polymers are
melt above or close to their melting
temperature and fillers are mixed. Due
to high viscosity of polymers, a large
sager force is required to disperse the

filler properly in the polymer matrix.
Twin screw extruders due to their good
dispersive/distributive missing capabil-
ities is the most popular equipment for
dispersing and processing the polymer
composites.55 In this technique, under
large shear force, fillers get aligned.
Zhang et al. fabricated high density
polyethylene (HDPE)/BN composites
by mixing their different ratios and
compounding in corotating twin screw
extruder, cut into small pieces and
dried, and were subsequently extruded
by the multistage stretching extrusion
BN sheets were aligned in the extru-
sion direction with anisotropy index of
480%.56 For low viscosity polymers,
technique such as mechanical or mag-
netic stirring might also work.
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Figure 5. Four different growth routes of 2D TMCs. Route 1 produces monolayer polycrystalline films with smaller grain
size. Route II produces monolayer polycrystalline films with large grain size. Route III produces discrete monolayers with
smaller crystal size. Route IV leads tomonocrystals with large size.53 Reproduced with permission from ref. 53. Copyright
(2018) Nature Publishing Group.

Liquid phase processing of compos-
ites, including solution mixing and in-
situ polymerization, is the most com-
monly used techniques. In solution
basedmixing, polymer is first dissolved
in a solvent and then fillers are intro-
ducedwith constant stirring. Sonication
is often used to disperse the filler in
the polymer, however, prolonged son-
ication can introduce the damage to

filler. If the viscosity of the liquid is too
low, fillers tend to agglomerate, once
the stirring/sonication is stopped. For
better dispersion fillers can be modi-
fied with different functional groups.
In in-situ polymerization, fillers are
introduced in the monomer solution.
Then monomer is polymerized under
constant stirring. This method is asso-
ciated with better filler dispersion in

the polymer matrix due to the bet-
ter interaction with polymer and filler.
To improve/control the filler distribu-
tion, dispersion and alignment, var-
ious strategies such as (i) the self-
assembly based on the LC phase for-
mation in aqueous solutions or liq-
uid polymers; (ii) the forced assem-
bly driven by external forces (tap cast-
ing, wet spinning, vacuum assisted
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Figure 6. (a) Overview of metals (highlighted in purple) andchalcogens (highlighted in yellow and orange) that can form lay-
ered sulfides, selenides and tellurides. (b) Optical images of 47 TMCs synthesized using our method. TMCs that have not been
previously synthesized are outlined in blue.53 Reproduced with permission from ref. 50. Copyright (2018) Nature Publishing
Group.
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Figure 7. Schematics showing changes in physical properties in the pre-percolation, percolation, and post-percolation region.
Note the rapid change in electrical conductivity and dielectric constant in the vicinity of percolation threshold (Vc).

filtration, electric field based align-
ment, magnetic field based alignment,
electrophoretic dispersion) and (iii)
the assembly directed by well-defined
templates (unidirectional freeze cast-
ing, bidirectional freeze casting, using
2D and 3D templates) have been
employed. Details of these methods can
be found elsewhere.

THEORETICAL
BACKGROUND ON
DIELECTRIC PROPERTIES
OF COMPOSITES
For conductive filler, electrical con-
ductivity and dielectric constant can
be predicted by percolation thresh-
old. At the filler concentrations lower
than a particular filler concentration
(pre-percolation), fillers are dispersed
in isolation from each other, though
some local network exist. At pre-
percolation, the electrical conductivity
and dielectric properties show negli-
gible effect with the filler concentra-

tion. When filler concentration reaches
a critical concentration (Vc), global net-
works start to form in the polymer
matrix (percolation threshold) and elec-
trical conductivity and dielectric con-
stant see a sharp increase. After per-
colation threshold, electrical conduc-
tivity saturates against the filler con-
centration and dielectric constant drops
sharply.9,14,55

At percolation threshold electrical
conductivity and dielectric constant can
be expressed as

k ∝ (V −Vc)
−s

σ ∝ (V −Vc)
t

Where k is the dielectric constant, V is
the filler concentration, Vc is the filler
concentration at percolation threshold,
s and t are critical constants. Value
of t is between 1.6-2 for a 3D sys-
tem and value of s is between 0.8-1.9,14

However, these values are not always
observed in practical system.

Percolation threshold for 2D fillers
can is given by following equation,

Vc =
2πD2t

4(D+DIP)
3

Where DIP is distance between two
filler platelets, D is the diameter of the
2D fillers and t is the thickness. In prac-
tical, this equation is seldom obeyed, as
fillers tend to agglomerate in the poly-
mer matrix.

For non-conductive fillers, the
dielectric constant of the composites
can be given by the Maxwell-Garnett
equation below57,

kc = km

(
1+ V (k f−km)

A (1−V )(k f −km)+km

]
×

πr2

Where kc, km, and kf are the dielec-
tric constants of the composite, filler
and the matrix, composites, respec-
tively. Value of A=1/3. This equation is
only valid for the low concentration of
fillers, for high filler concentration sys-
tem, Jaysundere–Smithe quation can be
employed, which accommodates inter-
filler forces at higher filler concentra-
tions. Lichtenker and Bruggeman equa-
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tions are also applied in some cases
to predict the dielectric constant of
non-conductive filler based polymer
composites.58,59

DIELECTRIC PROPERTIES
OF 2D FILLERS/POLYMER
COMPOSITES

Dielectric proper es of
conduc ve
2D-filler/polymer
composites
Conductive 2D fillers mainly include
MXenes and Gr based materials. 2D
Gr fillers can be fabricated as pristine
Gr, graphene oxide (GO) or reduced
graphene oxide (rGO). Pristine Gr has
good crystal structure and hence excel-
lent electrical, which can be imparted to
polymer matrix to fabricate the dielec-
tric polymer composites. Close to the
percolation threshold Gr sheets form
a miacrocapacitor like structures in
polymer matrix and due to Maxwell-
Wagner-Sillar (MWS) polarization,
hence, dielectric constant of the com-
posites increases significantly. Li et al.
added graphite nanoplatelets (GNP)
to polyvinylidene fluoride (PVDF)
matrix to fabricate dielectric compos-
ites. Percolation threshold at a low
GNP filler concentration of 2.4 wt.
% was obtained, as shown in Fig-
ure 8a. Near percolation threshold at
1KHz frequency, dielectric constant
of 173 and a low loss tangent value
of 0.65 was obtained.60 As typical of
percolative composites, near percola-
tion threshold, conductivity increase
significantly with the frequency, while
dielectric constant decreases at high
frequencies, as shown in Figure 8(a-
c). Similarly, Chu et al. reported few
layer graphene (FLG) nanosheet/PVDF
sandwich composites with dielectric
constant as high as 105.61 Though
pristine Gr has good electrical prop-
erties, it doesn’t have dangling bonds,
hence, its dispersion in polymer matrix

is difficult, which can effect repro-
ducibility of the dielectric properties
of the polymer composites, and also
lead to poor mechanical properties.
For better dispersion in the polmyer
matrix, pristine Gr was modified with
Ionic liquid (GIL) before mixing with
PVDF matrix. Percolation threshold of
GIL/PVDF composites was 1.86 vol.%
and of Gr/PVDF composites was 0.67
vol.%. Compared to Gr/PVDF compos-
ites, dielectric constant of GIL/PVDF
composites was recorded higher (167
compared to 90 for Gr/PVDF com-
posites) due to MWS polarization at
GIL and PVDF interface.62 Wang
et al. produced hydroxyl-modified
graphite micro-sheet and mixed those
with PVDF matrix. Dielectric con-
stant value of 6.5× 105 at test fre-
quency of 100Hz was obtained at 6
wt.% of fillers. They also obtained a
high breakdown strength (Eb) of 0.63
kV/mm and specific energy storage
value of 2.07 J/cm3.63 Gr have also
been modified with polymers such as
polyvinyl pyrrolidone (PVP), polyani-
line (PANI), etc., for better disper-
sion into polymer matrix.64 Lv et
al. modified graphene nanoparticles
(GNPs) with PANI through in-situ
polymerization of PANI and obtained
GNPs@PANI to subsequently mix
with oxidized styrene-butadienestyrene
copolymer (SBS-FH), see Figure 9.65

GNPs@PANI showed better disper-
sion in SBS-FH matrix compared to
GNPs, as former had a better interac-
tion with polymer due to the diploe-
dipole and hydrogen bonding interac-
tion. Since the PANI was dedoped, its
coating on GNPs resulted in blockage
of direct contact between conductive
GNP fillers, which greatly enhances
the MWS polarization, which subse-
quently give rise to large dielectric
constant values. Value of percolation
threshold and highest possible dielec-
tric constant for GNPs/SBS-FH and
GNPs@PANI/SBS-FH was 1.19 vol.%
and 9.38 vol.%, and 15.96 and 56.8 @
1000 Hz, respectively, see Figure 10.

Figure 8. (a) Frequency vs conduc-
tivity, (b) frequency vs dielectric con-
stant, and (c) frequency vs loss tangent
of GNP/PVDF composites. (d) Dielec-
tric properties of the GNP/PVDF com-
posites against filler concentration at
1 KHz frequency.60 Reproduced with
permission from ref. 60. Copyright
(2010) Elsevier.

Most commonly used Gr is fabri-
cated in the form of GO, where Gr is
oxidized with Gr. Presence of oxygen
functional groups not only help Go dis-
perses well in the polymer matrix but
also open the pathways for further func-
tionalization of the Gr with other mate-
rials. Moreover, as mentioned above,
low conductivity contact filler con-
tact between GNPs@PANI particle can
enhance the dielectric constant, sim-
ilar result may be obtained for GO,
as it has low conductivity compared
to pristine Gr. He et al. has prepared
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GO/PVDF composites with percola-
tion threshold as low as 1 vol.% and
dielectric constant as high as 107was
obtained.66 GO has been further modi-
fiedwith othermaterials such as PVP67,
ionic liquid amine, polyvinyl alcohol
(PVA)68, phosphorus salt69, and p-
Phenylenediamine (PPD)70 to mix with
polymer matrix for better dispersion
and improved dielectric properties.

Figure 10. (a) Dielectric constants of
xGNPs@PANI/SBS-FH composites as
a function of filler content at 1000 Hz.
(b) Percolation threshold calculation.
(c) Dielectric constant as a function of
frequency at different filler contents.65

Reproduced with permission from ref.
65. Copyright (2018) Elsevier.

Between two extremes of Gr, i.e.,
pristine Gr and GO, reduced GO (rGO)
is a better choice as a filler as it has

enough functional groups to aid the bet-
ter dispersion of Gr in polymer matrix
and also retains most of the excel-
lent electrical properties of pristine Gr.
Yuan et al. fabricated rGO/PDMS com-
posites with dielectric constant value
of 753 at the percolation threshold,
which is 260 times higher than that
of pure PDMS.71 Liu et al. demon-
strated that dielectric constant of rGO
based composites may be lower than Gr
based composites, however, dielectric
constant increase significantly for GO
composites with increases reduction.
For rGO with C/O ratio of 2.79 dielec-
tric constant of polyimide (PI) compos-
ites was 10, while for rGO with C/O
ratio of 2.96 dielectric was about 60,
clearly indicating dielectric constant
increased with degree of reduction.72

Due to use of different polymer matrix
and differently prepared Gr, GO, rGO
and functionalized Gr, it is impos-
sible to directly compare the effect
of change in Gr structure on dielec-
tric properties from different literature
sources. In an attempt to systematcailly
investigate the effect of Gr structure
on dielectric properties of compos-
ites, Li et al.73 produced five graphene
derivatives, namely, GO, rGO, elec-
trochemical exfoliated graphene (EG),
and 3,4,9,10-perylenetetracarboxylic
acid (Py)-modified rGO (PyrGO) and
EG (PyEG) (Figure 11), and studies
their effect on the dielectric proper-
ties of PVDF composites.73 Amongst
all the compoistes, PyEG/PVDF com-
posites showed best dielectric constant
(Figure 12). At percolation threshold,
PyEG (0.74 vol%)/PVDF composites
exhibited a dielectric constant of 480 at
1 kHz, with a relatively low dielectric
loss of 0.27. GO had lower conduc-
tivity, rGO and PyrGO had relatively
better conductivity than GO but lower
dispersion, EG had good conductivity
but poor dispersion, PyEG had good
dispersion due to presence of Py and
also had good electrical properties due
to pristine structure of EG as interaction
between Py and EG is non-covalent.
Hence, PyEG had best dielectric prop-

erties.
MXenes are other members of 2D

family, which have conducting prop-
erties. Initially, explored for energy
storage applications, MXenes have
slowly found their applications for
polymer composites due to their excel-
lent electrical properties. Tiu et al.
have reported Ti3C2Tx/poly(vinylidene
fluoridetrifluoro-ethylene-
chlorofluoroehylene) (P[VDF-TrFE-
CFE]) with dielectric constant as high
as 106 at 1HZ frequency at relatively
high percolation threshold of 15.3
wt.% of MXene due to the relatively
low average lateral sheet size of 4.5
µm. The percolation threshold further
increased to 16.8 wt.% when the size
further reduced to 1.5 µm and dielec-
tric constant reduced to 9120.74 It must
be mentioned here that Gr sheets have
relatively large size and hence need
relatively low filler concentration to
achieve percolation threshold com-
pared to MXenes. GNPs with large
lateral sizes of 25 µm delivered a
giant k value of over 107 at a much
lower filler loading of 2.3 vol% than
the Ti3C2Tx nanosheets.75 However, it
must be noted that 2D fillers, anyways,
are better than 0D, 1D and 3D fillers.

In addition to single phase 2D con-
ductive fillers, 0D, 1D filler and other
conductive and non-conductive fillers
can also be added to polymer to fab-
ricate multiphase polymer composites.
Example of such composites are carbon
nanotubes/GNP/Thermoplastic ure-
thane (TPU)76, Gr/PDA@Ag/TPU77,
BT/Ti2C3Tx/PVDF78, α-SiC/Ti2C3T/
PVDF79 where a third phase is added to
binary system to improve the dielectric
properties.

Dielectric proper es of
non-conduc ve 2D-filler/polymer
composites
While conductive filler based per-
colative composites can achieve high
dielectric constant at low filler concen-
tration, dielectric loss of such compos-
ites is usually high. Alternate strategy
to improve the dielectric composites
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Figure 9. Functionalization scheme of GNPs and dispersion of GNPs and modified GNPs in polymer matrix.65 Reproduced
with permission from ref. 65. Copyright (2018) Elsevier.

Figure 11. The structure illustration and characteristics of (a) GO, (b) rGO, (c) PyrGO, (d) EG and (e) PyEG and correspond-
ing dielectric behaviors of their PVDF composites.73 Reproduced with permission from ref. 73. Copyright (2019) Elsevier.

Figure 12. The dielectric constants and (b) losses of GO/PVDF,rGO/PVDF, PyrGO/PVDF, EG/PVDF and PyEG/PVDF com-
posites with different filler contents.73 Reproduced with permission from ref. 73. Copyright (2019) Elsevier.
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is to add insulating 2D fillers. Com-
pared to conductive filler, addition of
non-conductive fillers will moderately
increase the dielectric consant but then
dielectric loss is low, which results
into high Eb and high energy density
(Ud). Boron nitride (BN) is a repre-
sentative 2D non-conductive filler. BN
is a wide band gap filer with Eb of
800mV/m. BN nanosheets have been
mixed with various polymer matrices
including chitin80, poly(vinylidene flu-
oridechlorotrifluoroethylene) (P[VDF-
CTFE])81, PMMA82, poly(aryl ether
sulfone)83, etc. With addition of BN
nanosheets, Eb of Chitin and P[VDF-
CTFE] was increased by 40% and 85%,
respectively.80,81 Similarly, with addi-
tion of BN, greater energy density at
good Eb has been reported for polymer
composites. BN/PMMA composites at
10 wt.% BN laoding exhibited Ud of
3.5 J/cm3 at 400 MV/m, with an effi-
ciency of 86%.82 BN/ poly(aryl ether
sulfone) Ud of 4.2 J/cm3 at 500 MV/m
,with an efficiency of 86%.83 Similarly,
BN/divinyltetramethyldisiloxane-
bis(benzocyclobutene) (c-BCB) com-
posites exhibited Ud of 1.8 J/cm3 and
an efficiency of about 70% at 403
MV/m. In addition to excellent dielec-
tric properties, BN based polymer
composites also show good temper-
ature stability of dielectric properties.
Mica is another insulating 2D mate-
rial which can be added to polymers
to reinforce their dielectric proeprties.
Upon addition of Ultra-sonic exfoliated
mica sheets were to PMMA grafted
terpolymer (P(VDF-TrFE-CTFE)-g-
PMMA), discharging efficiency of
the composites reached ∼78% under
250 MV/m. The Ud of the optimized
composite reaches 9.6 J/cm3, which
is nearly 290% that of the pristine
terpolymer.84 2D metal oxides and
hydroxide have also been used as
fillers for improvement of polymer
dielectric properties. Ji et al.85 studied
Ni(OH)2 morphological and dielectric
properties of Ni(OH)2 nanoplatelets
and flowers based PVDF composites.
Composites showed 300% enhance-

ment in Ud . Suchenhancement was
result of linkages between filler and
PVDF due to presence of OH groups
on filler, high specific surface area
of filler which lead to enactment of
β -phase polarization, and less con-
centrated electric filed due to high
anisotropy of fillers in the matrix.85

2D ZrO2
86 and Al2O3

87 fillershave
also been introduced to the polymer
matrix to improve dielectric properties.
While exploring effect of Al2O3 on
c-BCB, Li et al.87 also demonstrated
superior efficiency of 2D nanoplatelets
(NPLS) compared to 0D nanoparti-
cles (NPs)and 1D nanowires (NWs) of
Al2O3 in enhancing dielectric proper-
ties. Authors demonstrated that com-
pared to 0D particles and 1D nanotubes,
2D NPLS of Al2O3 is most effective
in uniformly dispersing the applied
electric field (Figure 13a) and in hin-
dering the growth of breakdown phase
under high external electric fields and
elevated temperatures (Figure 13b),
which results in highest Eb and dis-
charge efficiency for 2D Al2O3 at the
same filler loadings (of NPs and NWs)
and temperature.

Barium titanate (BaTiO3or BT) is
an important ferroelectric ceramic and
is widely used to enhance the dielectric
properties of polymer matrices.88,89

With addition of mere 1 wt.% addi-
tion of BaTiO3 nanoplates, Ud was
increases by 100% to 9.7 J/cm3.
2D fillers of similar class includ-
ing 2D NaNbO3 and SrTiO3 have
been employed for fabricating
polymerdielectric composites.90,91

Similar to BaTiO3, with1 wt.% addi-
tion of SrTiO3, Ud was increases by
100% to 9.48 J/cm3.90 In addition
to these fillers, other 2D fillers such
as transition metal dichalcogenides
(TMDCs)92,93, clay minerals94, and
negatively charges metal oxide95,96

have been successfully employed for
fabrication of 2D/polymer dielectric
composites.

Similar to conductive fillers,
multiphase composites of insu-
lating fillers have also been fab-

ricated. Examples of such sys-
tem are MoS2/Al flakes/PVDF97,
WS2/BT nanoparticles/epoxy98,
poly(vinylidene fluoride-
hexafluoropropylene) (P[VDF-
HFP])/montmorillonite (xMMT)/Ag96,
Na+MMT/ionic liquid/PVDF99,
BT/BN/polyetherimide (PEI)100, and
BT/BN/PVDF101. Scope of dielec-
tric improvement in multiphase poly-
mer composites containing insulating
fillers is more than the conducting
filler base such systems. For exam-
ple, BN nanosheets and BT were dis-
persed in N, N-dimethylformamide
(DMF) and then mixed together to
BT@BN particles which were then
mixed with PVDF matrix. Using
these hybrid fillers, Eb improved to
580 kV/mm, and high energy den-
sity of 17.6 J/cm3was obtained for
5 wt.% filler concentrations, which
was better than binary phase com-
posites, see Figure 14.101 The simu-
lated (Figure 14c-e) maximum vol-
ume current densities in the composites
of BT@BN/PVDF, BN/PVDF, and
BT/PVDF, are 1.12E−11, 1.16E−11,
and 9.17E−10 A/cm2, respectively.
These current densities are directly
related with breakdown process. As
a result, BT@BN/PVDF composites
achieved higher Eb compared to binary
phase composites.

Dielectric proper es of layered
2D-filler/polymer composites
Mixing 2D fillers with polymers is
an easy straightforward approach to
prepare the composites with dielectric
properties. However, for such com-
posites control over interface between
fillers and polymers is not easy.
Polymer-filler interface is probably
the most important parameter to obtain
the good electrical properties. Alternate
route is to fabricate multilayered poly-
mer composite structures to obtain high
dielectric constant and large Eb. Both
three layered and more than three lay-
ered composites have been fabricated
for dielectric properties. Pan et al. fabri-
cated 2D NaNbO (NN) platelets/PVDF
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Figure 13. (a) Electric field distribution and (b) corresponding predicted breakdown path evolution computed by phase-field
simulations of the c-BCB nanocomposites with 7.5vol% Al2O3 nanoparticles, nanowires and nanoplates at 150 ◦C and varied
applied electric fields.87 Reproduced with permission from ref. 87. Copyright (2019) WILEY-VCH.

composites for outer layers and pristine
PVDF was sued as middle layer. Then
all the layers were stacked accord-
ing to the scheme shown in Figure
15. A high discharge energy density
of 13.5 J cm at 400 MV mpower
density of 2.68 MW cm, discharge
energy efficiency of 66.9%, and ultra-
fast discharge speed of 0.127 µs was
obtained. Figure 15 band c show the
discharge energy density and effi-
ciency of 3% NN/PVDF composites
and 3-0-3 layered composites. 3 in
3-0-3 represents the filler volume per-
centage, and 0 represents the pristine
PVDF. In these composites middle
layer experience, the high electric filed
and also prevent electrical field chan-
nels, which increase overall electric
field tolerance capacity of the lay-
ered composites. Titanate filled PVDF
composites as middle layer and pris-
tine PVDF as outer layer were fabri-
cated with 11.69 J cm and an excel-
lent discharge efficiency of 78.95%.
Composites with more than 3 lay-
ers composing of BN nanosheets and
Ba(Zr0.21Ti0.79)O3 nanofibers (BZT
NFs)103 layers, rGO-P1/BN-PI104 lay-

ers, and P(VDF-HFP)/BN105 layers
have been reported with significantly
improved dielectric properties. In some
cases, filler layer has also been used in
multilayered structures. Zhu et al.106

fabricated layered composites with
BN as middle layer and PVDF as
outer layer. Composites were fabri-
cated through a simple layer-by-layer
solution-casting process. During the
casting process, BN nanosheets were
aligned along the in-plane direction.
Compared to the pristine PVDF, the
composite films show remarkably
suppressed leakage current, result-
ing in a high breakdown strength and
a superior energy density which are
136% and 275%, respectively. Liu et
al.107 used BN nanosheets as outer
layer to sandwich polycarbonate (PC)
layer. The energy storage density of
the composites was 5.52 J/cm3 under
500 MV/m electric field at 100 ◦C,
which is 15.10% higher than that of
pure PC.

SUMMARY AND OUTLOOK
OP2D materials has great potential for
polymer dielectric composites due to
their superior electrical properties and
high surface area to interface with poly-
mer matrix. For use of 2D polymer
for composite applications, large scale
high quality synthesis of 2D quality is a
big challenge. Current synthesis meth-
ods are trade-off between large scale
synthesis and structural quality of 2D
materials. Liquid based synthesis meth-
ods can produce ton scale 2D materials
but quality is poor due to presence of
structural defects arising from violent
chemical reactions. CVD can produce
good quality 2D materials but scalabil-
ity is a serious issue, as materials can
only be grown as sheets. Currently, for
polymer composites, liquid synthesis of
2D materials is preferred route, how-
ever, quality of 2D materials need to
be improved in the future. For dielectric
properties, conductive 2D-fillers (such
as Gr, MXenes) do offer large dielec-
tric constant values at low filler con-
centrations, but these composites have
large dielectric loss values, low break-
down strength and low energy den-
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Figure 14. (a) Variation of Eb with the filler content of the four types of films. (b) Resistivity and leakage current density as a
function of the electric field of the PVDF and the composite films filled with 3 wt% of fillers. (c–e) The simulated space charge
density distribution in the PVDF composites filled with BT@BN, BN, and BT, respectively. The arrows indicate the direction
of the electric field. The particles are in the middle position of the simulated area.101 reproduced with permission from ref.
101. Copyright (2018) WILEY-VCH

sity. Moreover, their properties are sig-
nificantly influenced by frequency and
external stimuli such as temperature
and pressure. On the other hand, non-
conductive 2D-fillers based polymer
composites offer low dielectric con-
stant value even at relatively large filler
concentrations, but their dielectric loss
value is very low, hence breakdown

strength and energy density values are
good. Moreover, dielectric properties
of these composites are stable against
temperature, pressure and frequency.
Dielectric properties of both conduc-
tive and non-conductive 2D filler based
composites can be fine-tuned by the use
of multi phase and layered composites.
However, to do that, a fine understand-

ing of structure-property relationship
of multi phase and layered composites
need to be developed and should be the
focus of future research.

ACKNOWLEDGMENTS
The authors are thankful to the
National Natural Foundation of China

Materials Innova ons | 2022 | h ps://materialsinnova ons.hexapb.com/ 60

https://materialsinnovations.hexapb.com/


Review Ar cle h p://doi.org/10.54738/MI.2022.2202
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