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Nanopar cles range in size from 1-100 nm although much larger nanopar cles
i.e. up to 300 nm, are widely reported for medical applica on. Current trends in
drug delivery research have shi ed focus toward the designing of the “smart” drug
delivery systems (DDS) for spacial and temporal control of the drug delivery.When a
magne c moiety is added to a DDS i.e. nanopar cle or liposome, it can be retained
in a specific part of the body through localized magne c field. These magne cally
modulated drug delivery systems (MDDS) can also carry payload to deep lying
tumor ssues which are difficult to target with other targe ng modali es. MDDS
are also used as hyperthermic agents under the influence of externally applied
alterna ng magne c field. Not only the magne c hyperthermia can kill cancer
cells but also causes phase-change in nanopar cles to induce abrupt drug release.
Magne c resonance imaging (MRI) is a diagnos c techniques used to image disease
specific changes in ssues using contrast agents such as iron oxide nanopar cles.
When iron oxide nanopar cles are loaded with drugs, they act as a contrast agent
and carrier for targeted drug delivery which is revolu onizing medical field. In
addi on to drug delivery applica ons,magne c nanopar cles are also being used in
biosensors for iden fica on and separa on of target molecules/cells from complex
mixture. However, challenges associated with op mized par cle size, selec on of
biocompa ble materials, and fate of MDDS a er in vivo applica on need to be
addressed. Emerging literature also points towards interac on of magne c field
with human body. Thus, carefully tailored magne c modulated nanopar cles are
expected to emerge as a key player in medical field due to their unique diagnos c,
therapeu c, sensing and mul func onal applica on.
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INTRODUCTION

C urrent trends in the drug deliv-
ery research have shifted focus
toward designing the “smart”

drug delivery systems (DDS) that can
provide spatial and temporal control of
drug delivery1. Spatial control of drug
delivery is important because many
new therapeutic agents are non-specific
i.e. they can affect both healthy and
disease-affected cells2. This objective
has been achieved by devising targeted
drug delivery systems that can carry
the drug exclusively to the disease-
specific tissues. Temporal control of
drug delivery systems is required in
a situation where delayed or sequen-
tial drug release is desirable3. Novel
DDS have been employed for diag-
nostic applications ranging from whole
organ imaging to single-cell detection4.
Recent developments of dual modal-
ities ensure diagnosis, targeting, and
treatment of challenging diseases in a
single administration.

The curiosity to identify the medi-
cal benefits of themagnetic field started
as soon as the discovery of the mag-
netic field. Although a lot of claims
have been made of its potential bene-
fits, scientific proof of such claims is
limited or even absent in some cases. In
pharmaceutical sciences, the magnetic
field has shown promising applications
to control the site and rate of release
of potent therapeutic agents from DDS
by externally applied magnetic field5.
Magnetically modulated drug deliv-
ery systems (MDDS) have attracted
vast interest in medical research due
to the many important properties of
the magnetic field. First, the magnetic
field can easily pass through the body
and the magnetic permeability of the
human body is roughly the same as
that of air6. This provides the oppor-
tunity to target MDDS to deep tissues
which is a limitation of most other
targeting strategies. Second, the mag-
netic field is generally considered safer
than radiations and, currently, there
are no clinically proven side effects

after short-term application for diag-
nostic and therapeutic applications7.
When a magnetic moiety is added in
a DDS i.e. nanoparticle or liposome,
it can be retained in a specific part of
the body through a localized magnetic
field. These MDDS can carry a pay-
load to deep-lying tumor tissues which
are difficult to target with other target-
ing modalities. Magnetic nanoparticles
(MNP) are also used as hyperthermic
agents under the influence of externally
applied magnetic fields to induce drug
release from DDS or as thermother-
apy to kill cancer cells8−9. Diagnos-
tic applications of MDDS ranges from
MRI contrast agents to magnetic cell
separation techniques. This review arti-
cle discusses different applications of
magnetically modulated drug delivery
systems. Various medical applications
that have been enhanced by a magnetic
field are summarized in table 1. Mag-
netic field can be used at three dif-
ferent frequency ranges that are static,
time-varying and radio frequency. Due
to the phenomenon of coexistence of
electrical and magnetic fields, reports
have emerged on the unwanted health
effects.

MAGNETISM IN
DIAGNOSIS
A magnetic field has been largely used
for imaging and cell separation due to
lesser side effects than the use of haz-
ardous radiations. It is also replacing
surgical procedures to obtain biopsies
which is a commonmethod used for the
diagnosis of many diseases.

Magnetic Resonance Imaging:
MRI is a non-invasive diagnos-

tic technique that uses a magnetic
field to produce a three-dimensional
image of different body tissues and
organs. MRI operation involves plac-
ing the patient in the strong magnetic
field that will make protons in mobile
water of the body, usually hydrogen
nucleus, to align along with the applied
field. Then, a radiofrequency pulse is
passed through the body that will stim-

ulate the protons to pull out of the
applied field. When the radiofrequency
source is removed, protons revert to
realign to a normal state and release
energy10. The time protons take to
realign with the magnetic field and
the amount of energy released are
characteristic of the anatomical envi-
ronment and chemical nature of tis-
sues. Due to the absence of ionizing
radiations, MRI is considered superior
to CT scan and X-ray-based imaging
techniques especially when repeated
imaging is required11. MRI has also
effectively replaced invasive proce-
dures to obtain biopsies in many diag-
nostic applications. In addition, MRI
is more suitable for soft tissue imag-
ing than other imaging modalities12.
Native contrast in MRI imaging is
proton density, T1 relaxation (recov-
ery of longitudinal magnetization), and
T2 relaxation (recovery of transverse
magnetization).13 However, contrast-
enhancing agents may be given to the
patient before MRI to facilitate the
faster realignment of protons and pro-
duce a brighter image.14 These con-
trast agents may act at any sub-atomic
event in the magnetic resonance mech-
anism. Iron oxide nanoparticles have
emerged as excellent contrast agents in
cancer detection with added benefits of
their theranostic activity.15By control-
ling magnetic field and radiofrequency
pulse, a wide variety of pathologies can
be diagnosed due to changes occur-
ring in proton density during the dis-
ease. The first step in MNP enhanced
MRI is the systemic injection for site-
specific accumulation by application
of magnetic field or by attachment of
targeting ligand16. Then, MRI is per-
formed for high-quality imaging (fig-
ure 1). MNP coating with antifouling
agents prevents surface attachment of
proteins and other biological moieties
that can limit contrast efficiency in the
body17.MRI has also been used in com-
bination with drug-loaded nanoparti-
cles for image-guided drug delivery.
Similarly, MRI has been used to induce
hyperthermia from MNP which will be
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Table 1. Diagnostic and treatment applications of magnetically modulated nanocarriers in different medical conditions.
Applica-
tion

Magnetic system Mechanism

Diagnosis
Magnetic Resonance
Imaging (MRI)

MRI is an imaging technique which measures changes in proton density in target
tissues that occur during course of disease.

Magnetic cell separation Target cells are tagged with magnetic nanoparticles and magnetic field is applied
to separate the tagged cells.

Immunoassays Antibodies are conjugated to the magnetic nanoparticles and magnetic field is
applied to collect nanoparticles bound antibody-target molecule (antigen)
complexes.

Cancer
treatment

Alternating magnetic
field (AMF) for
thermotherapy

Magnetic nanoparticles are given to patient that accumulate in cancer. Then,
AMF is applied which produces hyperthermia to kill cancer cells.

MRI for image guided
therapy

This involves administration of magnetic nanoparticles for imaging of cancer
using MRI. Then, high frequency AMF is applied to produce hyperthermia, as in
thermotherapy, or to induce release of co-loaded drug for treatment.

Brain
function
study

MRI Changes in blood flow during performance of different tasks shows which part
of brain is associated with the function.

Drug
delivery

Static magnetic field Magnetic nanoparticles are attached to drug delivery systems and an externally
applied magnetic field is used to guide their transport in the body.

MRI MRI of is used to produces hyperthermia to induce drug release from magnetic
nanoparticles tagged drug delivery systems.

Psychic
diseases

Transcranial magnetic
stimulation (TMS)

AMF is applied over specific brain point to induce electric pulses as mean to
induce or to synchronize neuron firing.

Magnetic seizure therapy
(MST)

AMF of higher frequency than used in TMS is used to cause seizure to control
brain function.

Muscu-
loskeletal
diseases

Millimeter wave therapy Uses AMF of extremely high frequency to treat pain and bone healing.
Microwave diathermy Induces localized hyperthermia to relieve pain and swelling, and to improve

healing.
Pulsed AMF Pulses of electromagnetic field reduce degenerative pathways and induce

regenerative and growth cells.
Static magnetic field Guides direction of growth of new cells in tissue engineering

discussed in the next headings.
Magnetic separation techniques:
The magnetic field’s ability to

control the movement of magnetic
nanoparticles in time and space has
innovated the field of separation tech-
niques, as following:

Magnetic cell separation tech-
niques: The separation of the magnetic
and nonmagnetic components in a mix-
ture is made possible by the application
of a magnetic field as a driving force.
However, biomedical applications have
emerged in the last few decades18. The
isolation and purification of different
cells and biochemical molecules have
been recognized as the most important
application of MNP19. In magnetic cell
separation, cell sorting is done through

the attraction of labeled cells in a het-
erogeneous mixture towards magnetic
flux. The first step is to label MNP with
specific ligands for target cells to be
separated. Labeled MNP is incubated
with cell culture for a specified time to
allow targeted binding on the cell sur-
face. This can be facilitated by using
a positively charged polymer matrix
that can bind negatively charged cell
membranes20. The interactions medi-
ated by targeted ligands reduce the time
for adsorption and enhance the sepa-
ration efficiency of different compo-
nents. Core-shell microspheres formed
by using the modified silica and Fe3O4
as a magnetizing agent have also been
used for application in the separation
of cells and different biomolecules such

as nucleic acid.21 Aldehyde modified
silica nanoparticles have demonstrated
better adsorptive and targeting proper-
ties in in vitro experiments.22

Magnetic nanoparticles in
immunoassay: The magnetic field can
also be used to assist immunoassay-
based separation techniques. This is
done by attaching the antibody to MNP
for the detection of target biological
molecules. The magnetic field is used
in these systems to aid in the detection
and separation of bound molecules.
Interestingly, MNP can be recov-
ered after the experiment as reusable
agents.23−24

Magnetic nanoparticles in biosen-
sors: MNP has been engineered as
biosensors for one-step detection of
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Figure 1. Presentation of small sized iron oxide nanoparticles as contrast for MRI imaging of brain. T1 and T2 weighted
phantom imaging of iron oxide nanoparticles was acquired at 0.5 T (A) and 1.5 T (B) scanner. T1 (C) and T2 (D) weighted
imaging of nude mice after intravenous injection of iron oxide nanoparticles at the dose of 2 mg iron per kg of body weight.
Adapted from ref. 16. Copyright of Royal Society of Chemistry, 2021.

various analytes. These types of sensors
can measure changes in signal, such
as light reflectance and electrical resis-
tance, due to the conjugation of MNP
with the biological analyte. The MNP
is paving the way for fabrications of
highly sensitive, rapid, and economic
biosensors for mobile applications.

MAGNETIC FIELD IN DRUG
DELIVERY
Lack of selectivity and uneven distri-
bution of different therapeutic agents
has limited the use of many potent
chemotherapeutic agents. Targeted
DDS are designed to deliver drugs
selectively to the desired site. The tar-

geted delivery of DDS by conjuga-
tion with magnetic nanoparticles has
opened a new era in drug delivery25.
MDDS target loaded drugs or other
therapeutic moieties to the desired site
by an externally applied static mag-
netic field. On the other hand, MNP
has been used to initiate drug release
from colloidal DDS due to hyperther-
mia induced by an alternating mag-
netic field. Multiple systems, depend-
ing upon their size, functional capa-
bilities, and structural composition,
have been categorized under magnetic
carriers including magnetic liposome,
noisome, micro nanoparticles.

Magnetic microparticles and
nanoparticles

Magnetic microparticles tend to
respond to the static magnetic field
by moving in direction of the field
lines according to Coulomb’s Law.26

Magnetic microparticles can respond to
alternating magnetic fields leading to
the transition of energy from the field
to the microparticles. The resulting
heating may be used for hyperther-
mia therapy and to aid in the release
of potent drugs from thermorespon-
sive DDS.27 Magnetic particles can
be prepared with the flexibility of size
range from a few nanometers (usu-
ally >10 nm) to tens of micrometers
which is comparable to the cell size of
(10-20 µm), viruses (0.02-0.45 nm),
proteins (5-50 nm), and gene products
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(2 µm width and 0.1 nm length). So,
the proximity with biological targets
offers a variety of advantages in drug
delivery.28 Drug delivery to the central
nervous system (CNS) via the blood-
brain barrier provides limited access
because of physiological differences of
blood capillaries in CNS, less solubil-
ity, and poor bio-distribution of drug
molecules.29 Conventional delivery of
chemotherapeutic agents had shown to
be less effective, although the disrup-
tion of blood-brain barrier integrity has
shown to increase the penetration of
drugs during multiple disorders. The
development of micro-sized drug car-
riers (microcapsules) coated with the
drug molecule leads to enhanced drug
delivery to brain tissues that is further
strengthened by the use of magnetic
resonance techniques.30 The transport
of magnetic microcapsules in the blood
vessels was demonstrated by different
biomimetic approaches. These stud-
ies elaborate on the effect of blood
flow and particle size as well as other
electrostatic and steric forces.31 Fur-
thermore, magnetically modulated tar-
geting of microparticles to brain tissues
does not induce an immune response
which has been a limiting factor for
many novel DDS.

MNP is a class of magnetic par-
ticles in the size range of 1-100 nm.
Advancement in the availability of dif-
ferent biodegradable, as well as non-
biodegradable materials and develop-
mental technologies, facilitate the pro-
duction of these particles with differ-
ent physical, chemical, and functional
modalities. MNP decorated with differ-
ent functional modalities has been uti-
lized to address the above-mentioned
challenges of diagnosis and treatment
of the different diseases in spatiotem-
poral mode32. MNP can be retained
at localized tissue due to externally
applied magnetic fields. One example
of these systems is the high retention of
nanoparticles at inflamed tissues of the
skin and the underlying musculoskele-
tal system. After the drug is released,
the magnetic field can be switched off

leading to the elimination of nanopar-
ticles from the body.33 Another tar-
geting application of magnetic field
is locoregional chemotherapy. This
involves intra-arterial administration
of nanoparticles that are directed to and
localized in tumor tissue by an exter-
nally applied static magnetic field. This
increases drug accumulation in targeted
tissue leading to improve efficacy.34

Recently, magnetosomes have gained
interest in the medical field due to
their biocompatible nature. These are
intracellular nanoparticles chain used
by magnetotactic bacteria to navigate
in the direction of the earth’s mag-
netic field. Due to their homogenous
size and vesicular structure, they have
been used for the delivery of large
drug molecules. Gareev et al. has writ-
ten a review article that comprehen-
sively discusses magnetosome appli-
cations in the medical field.35 MNP
has also been used to induce drug
release from other drug delivery sys-
tems. This goal is achieved usually
by bonding a magnetic moiety to a
polymer resulting in an amphiphilic
structure of polymer that can form
nanoparticles by self-assembly in
vitro or in vivo. Conversely, MNP
can be loaded in as-formed poly-
meric nanoparticles to cause ther-
moresponsive drug release at the tar-
get site 32b 36,37. The advantages in
two ways i.e.amount disease-affected
target tissuesirpharmacological effect
normal drugtoxic Thegelatin capsule
to GIT, thus, releasing the encapsu-
lated drug at the target site In another
study, functionalized montmorillonite
(MMT) materials were used as unique
porous structures(FePt)FePt@MMT
contract enhancer FePt@MMT-MIT,
in addition to MRI imaging and MFH,
chemotherapy38. Similarly, hybrid sys-
tems have been prepared for simul-
taneous delivery of chemotherapeutic
agents, gene products, and SPION,
a strategy that may enable complete
eradication of tumor and associated
stem cells. Another recent innovation
in magnetically modulated drug deliv-

ery is nanomotors, sometimes referred
to as nano-swimmers that can swim in
the blood to deliver encapsulated drugs
to the target site. These nanomotors
rotate under the influence of the applied
magnetic field and move toward the
target, thus no build-in fuel reservoir is
needed. Another benefit of nanomotors
is their ease to cross biological barriers
by disrupting the target membrane or
extracellular matrix.

Magnetic liposome
Liposomes consist of a phospho-

lipid bilayer and an internal aqueous
core which enable them to encapsu-
late both hydrophobic and hydrophilic
drugs, respectively. Advances in lipo-
somal drug delivery involve targeting
and “clickable” drug release by the
inclusion of magnetic or paramagnetic
particles39−41. The magnetic particles
can be incorporated in the central core
of vesicles, lipid bilayer, or make com-
plexes on the surface of the liposome
(figure 3). In addition, phospholipids
tagged with magnetic or paramagnetic
materials such as gadolinium can be
used to form liposomes. The presence
of magnetic materials tends to align the
movement of liposomes along the lines
of the magnetic field and enhance the
penetrability and penetration of lipo-
somes at the target site. Drug release
from liposomes is mediated by mag-
netically induced hyperthermia. When
magnetic liposomes are exposed to an
alternating magnetic field, hyperther-
mia is produced which destabilizes
lipid bilayer leading to the release of
encapsulated drug. Consequently, the
drug release rate can be controlled by
varying patterns or strength of applied
magnetic field42. Fabrication of mag-
netic liposomes with targeting ligands,
functional groups, fluorescent com-
pounds, and contrasting agents enables
multi-modal applications in diagnosis,
imaging, and delivery ofmultiple thera-
peutic compounds to the target cell and
tissues.1, 43 The most important appli-
cation of magnetic liposomes is the
delivery of gene products due to their
intrinsically high penetration in cells
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Figure 2. Mitoxantrone loaded FePt nanoparticles for diagnosis, magnetic hyperthermia (thermotherapy), and targeted
chemotherapy of cancer in mice. Adopted from ref. 38. Copyright of Springer, 2021.

and transfection efficiency. Cationic
lipids are generally used for these appli-
cations because they can strongly bind
negatively charged nucleic acid.44

Magnetic Hydrogels
Hydrogels are a three-dimensional

network of cross-linked polymers
with tunable characteristics such
as versatile chemical nature and
biocompatibility.45 The hydrogels can
be loaded with different therapeutic
and diagnostic modalities including
microparticles, nanoparticles, lipo-
somes, fluorescent and contrasting
agents that have been discussed pre-
viously (figure 4). Different methods

have been employed for the fabrica-
tion of these formulations but grafting-
onto method46, in situ precipitation
method47, and blending methods48 are
of prime importance. The incorporation
of magnetic particles in the matrix of
conventional hydrogels permits greater
control over the release profile of
different macromolecular therapeutic
moieties including peptides, proteins,
and hormones. The therapeutic pay-
load, either drug or drug-loaded DDS,
is loaded into hydrogel-MNP compos-
ite and magnetic hyperthermia is used
to induce the release of payload. Hydro-
gels were also prepared with micron-

sized pores for drug loading and sub-
sequent release in a three-dimensional
intracellular environment49. Interest-
ingly, pulsatile release of payload can
also be achieved by repetitive on and
off application of the magnetic field
application.50

MAGNETIC FIELD
HYPERTHERMIA FOR
TREATMENT OF CANCER

Hyperthermia has been used histori-
cally to cure illnesses and was a com-
mendable point of interest. It has been
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Figure 3. Structure of magnetic liposome consisting of a phospholipid bilayer coating an aqueous core containing magnetic
NPs and drug payload.

Figure 4. Schematic illustration of drug and magnetic NPs loaded magnetic hydrogel’s network and induction ofdrug release
upon magnetic hyperthermia.
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assumed that cancer can be treated
as well as its growth can be sup-
pressed by fever51. In accordance with
this assumption, scientists began to
utilize this concept of fever induc-
tion to cure cancer52 or using exter-
nal sources to provide hyperthermia53.
To achieve this aim, hyperthermia was
induced bymany tactics inside the body
as well as from outside means via
infrared radiation, alternating magnetic
fields and ultrasound waves. The pri-
mary focus of this review are mag-
netic field related techniques which
utilize heat to cure cancer. Owing
to non-toxic character of iron oxide
nanoparticles (magnetite Fe3O4 as well
as maghemite γ-Fe2O3) have been
majorly employed (Figure 5) 54. Type
of MNP, magnetosomes, are prod-
ucts of magneto-tactic bacteria inside
bacterial cell wall via mineralization
of oxides or sulfides of iron, which
produce superior results as compared
to iron oxide nanoparticles. Every
magneto-tactic specie give its pecu-
liar crystals.55 Majority of studies have
revealed undesirable experience upon
MNP injection into tumor site directly.
Currently, tumor-specific ligands have
been employed to deliver MNP via IV
route. For instance, attempts have been
made to target intravenously admin-
istered MNP to tumors using tumor-
specific ligands. For example, single-
core magnetic nanoparticles were cova-
lently conjugated with a fluorochrome
and either ant-α-tubulin or anti-β -
catenin antibodies for intracellular tar-
geting in mice. Binding of antibod-
ies did not alter the magnetic prop-
erties of the MNP. The antibodies
retained their immunochemical prop-
erties, target specificity, the ability to
visualize the protein distribution.56 In
case of magnetic field hyperthermia
(MFH), there is external application
of alternating magnetic field to heat
up accumulated MNP inside tumor.
The prominent disadvantage of hyper-
thermia is immediate buildup of heat
shock proteins (HSP) upon MFH appli-
cation. HSP belongs to those kind

of proteins that hinder protein aggre-
gation originated by heat heading to
thermotolerance.57 Hence, thermotol-
erance not only has put MFH sta-
tus at risk as an antitumor therapeu-
tic tool but also restrict its use to
once or twice in a week. MFH heat-
ing range determines killing pattern of
tumor cells such as autophagy, necro-
sis, and apoptosis.58 Hyperthermia can
be applied both locally as well as
to the whole body. Higher tempera-
ture is required for local hyperthermia
rather than whole-body hyperthermia
which needs mild rise in body temper-
ature. Classical or sub-lethal MFH has
been generated from 41-46◦C does not
destroy cancer cells.59 Classical MFH
gives dose dependent effects which
are reversible. Though its unambigu-
ous target is unclear, but it is attributed
to impair various intracellular enzymes,
receptors, and proteins. Hence it is
utilized along with radiotherapy60 as
well as chemotherapy.61 Synergism
of magnetic field is seen with other
modes as well, but it is dependent
on application time. Thermo-ablation
or lethal MFH has been generated
at 55◦C, which destroys cancer cells
directly.62 This process burns cells due
to temperature and results in necro-
sis at a broad spectrum. One research
showed that patients incompliant to tra-
ditional chemotherapy, responded well
to 43◦C hyperthermia without signif-
icant adverse effects.63−68 Addition-
ally, it helps to measure extent of
tumor mass reduction after MFH appli-
cation. MFH can regulate flow of blood
towards tumor for enhancing approach
of immune elements to tumor.

According to recent research it has
been seen that against tumors, MFH
can produce and enhance the effect
of Immune system. It is believed that
the initiation of MFH is performed
by none other than the HSP family
members such as HSP-96 AND HSP-
70.68 The HSP-96 Vaccine, which is
tumor derived, has been tested previ-
ously and it showed good results as
in case of antitumor activity.69 Any-

how, the synthesis produced by MSH
and HSP release appeared to be an
easy option because of its low cost and
unavailability of surgical extraction.
The altered immune response in sub-
lethal MFH was observed due to higher
level of HSP expression which were
usually found in suppressed form in the
tumors. In case of lethal MFH, release
of stored HSP in tumor cell is the rea-
son. Immune response seems appealing
for three prominent reasons. First of all,
it can upgrade the tumor killing mech-
anism of body naturally which also
lowers the demand of the chemother-
apeutic agents.68 Secondly, the mod-
ulations in immune system has been
seen to kill metastasized tumors that
are distant and far away from hyper-
thermia exposure.65Third, the recurrent
tumor risk decreases as MFH induced
immune response lasts for a longer time
frame.70 Modified tumor microenvi-
ronment and immunosuppressive cells
determine HSPs vaccination effect.
MFH application to eliminate tumors
also counteract casual working of var-
ious immune system components in a
complicated way. Previously, MFH has
also been employed along with MRI as
role of contrast agents was played by
MNP in MRI.71 This modality opens
door to visualize tumor after injecting
MNP inside patient body followed by
MFH killing of tumor.

MNP has been traditionally used
along with horseradish peroxidase
(HRP), an enzyme commonly used
for peroxidase activity. In these appli-
cations, catalytic activity is carried out
by HRP, and MNP is used for mag-
netically modulated separation of a
conjugated system for renewable appli-
cations. They can enhance efficiency
at different processing steps and bio-
logical activity in complex mixture by
the application of the magnetic field.
However, Vallabani et al. found that
MNP, such as magnetite (Fe3O4), pos-
sess intrinsic peroxidase-like-activity
i.e. catalyze the oxidation of biolog-
ical materials in the mixture.72 This
allows catalysis with Fe3O4 nanopar-
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Figure 5. MNP mediated tumor cell destruction under application of alternating magnetic field (AMF). First, nanoparticles
are targeted to tumor by application of AMF. Then, frequency of AMF is changed to induce localized tumor ablation

ticles where catalyst can be recovered
by a magnetic field at the end or pre-
determined point. Since then, many
inorganic nanoparticles have been
tested for enzyme-like activities.72,73

The mechanism of the peroxidase-like
activity of MNP is similar to HRP but
offers many advantages. The catalytic
activity of MNP is directly propor-
tional to the amount of Fe2+ ions on the
surface. The presence of a large num-
ber of Fe2+ ions on the MNP surface
leads to a much higher catalysis rate as
compared to HRP which has only one
Fe2+ ion. Optimum catalysis activity
of MNP, just like HRP, is achieved in
a range of H2O2 concentrations above
or below which decreases the catalysis
rate. Similarly, MNP activity is depen-
dent upon the pH and temperature of
the reaction mixture although they have
a broader range of these working con-
ditions. Due to their inorganic nature,
MNP is much more stable and robust in
biological systems. Interestingly, MNP
show enzyme activity over a broad
size range which makes them pre-
ferred candidates for immunoassays,
biosensors, and nanodevices.74−75

Most researchers have prepared biosen-
sors and biocatalyst of Fe3O4 in con-
jugation with other materials. Fe3O4 is
conjugated to reduced graphene oxide
(rGO) to combine the properties of both
materials. rGO is a single atom thick
layer of carbon and possesses excellent
mechanical strength and flexibility. It
has shown mild peroxidase-like activ-
ity of its own and can bind almost all
materials due to its functionalized sur-
face. Fe3O4-rGO shows higher enzyme
activity than Fe3O4 or go alone and can
be recovered under magnetic field.72

In this way, it is also possible to stop
the catalytic reaction at a certain time
to obtain a product of desired composi-
tion or associated properties. Together
with the physical properties of rGO,
the Fe3O4-rGO has emerged as a first-
choice inorganic catalyst for economic,
robust, reusable, and high sensitivity
devices. The Fe3O4 based compos-
ites have been successfully evaluated
for the detection of various biolog-
ical compounds such as glucose76,
dopamine77 glycoproteins78, etc.

SAFETY OF MAGNETIC
FIELD
Magnetic field application in the
biomedical field is generally regarded
as safe. As scientists believe that MF
can be used for the treatment of dis-
eases, they should expect the oppo-
site too. Just like chemotherapeutic
drugs, uncontrolled exposure to other-
wise beneficial magnetic fields may be
harmful. An increasing number of stud-
ies support the notion that magnetic
fields can produce many unwanted
effects at frequency and amplitude
being used for different biomedi-
cal applications. Although systematic
reviews and meta-analysis studies have
rejected some of these studies based
on improper design or lack of statis-
tically significant results, all of these
findings cannot be ignored. In the case
of MRI, many problems were reported
including attraction of metallic objects
in the room, interference with electro-
magnetic or metallic medical devices
used by the patient, and unwanted
side effects especially in patients with
previous history.79 During the initial
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years of MRI, a few accidental injuries
and even deaths were reported due to
metallic objects, such as oxygen cylin-
ders or chairs, being attracted by the
strong magnetic field and hitting the
patient in MRI machine.80 MRI inter-
action withmetallic devices or implants
used by the patients is two-tier. First,
the static magnetic field can strongly
attract metallic devices. Second, alter-
nating AMF can generate current in
these devices which may lead to fatal
consequences. These effects can be
hazardous to patients and may also dis-
tort image quality. However, current
clinical practices have introduced var-
ious precautions and safety measures
to reduce such complications. Usu-
ally, prior counseling of patients about
the basics safety and efficacy of MRI
is a useful step to prepare them for
MRI and feel comfortable during the
examination. Electromagnetic fields
have been studied widely in animals
and humans for their carcinogenic and
genotoxic effects. The international
agency of cancer research has catego-
rized extremely low-frequency mag-
netic fields (ELF) (3-300 Hz) as possi-
ble carcinogens (class 2B). Currently,
childhood leukemia is the only type of
carcinogenicity whose association with
occupational exposure to ELF is sup-
ported by scientific evidence.81 Direct
damage to genes is not supported by
well-designed studies, however, such
effects may be observed in the pres-
ence of genotoxic agents.82 Similarly,
various studies conducted to evaluate
the effect of the static magnetic field
indicated an increased risk of genotoxic
effect. The genotoxic effects appeared
in a dose-dependent fashion and tend to
disappear after the removal of the mag-
netic field.83 On the other hand, Gunes
et al. reported that genotoxic effects are
negligible even at the stronger mag-
netic fields used in clinical settings.84

Association between behavioral
changes and radiofrequency field has
been reported by patients for a long
time and termed as electromagnetic
hypersensitivity syndrome EHS). How-

ever, only a few studies have sup-
ported this assumption. Domotor et
al. observed that patients who report
EHS have a higher score of somatic
and psychic traits which is an indicator
of lower mental well-being.85 Studies
evaluating behavioral aspects showed
that ELF improve the memory of par-
ticipants in one study and impaired
it in another study. In a study, sham
versus static magnetic field settings
was tested on rats to assess behavioral
changes. The rats were trained to climb
up the hole of the MRI machine to get
the food. They found that rats stopped
getting food from the hole whenever
a magnetic field was applied to it.
Nevertheless, this behavior was abol-
ished when sensory parts of the brain
were surgically removed.86 Although
most studies utilized exposure to ran-
dom or occupational exposure, the risk
may persist with deliberate exposure to
medical ELF and static magnetic field
(SMF). As discussed in the previous
headings, magnetic fields of similar
amplitudes or frequencies are being
investigated for biomedical applica-
tions. Towards the end of the 20th cen-
tury, emerging literature showed that
conscious experience of brain function
was related to the synchronization of
neurons and not the number of neu-
rons firing. Recently, the conscious
electromagnetic information (CEMI)
theory of McFadden and Peckett pro-
posed that information from neurons is
integrated to form an amplified elec-
tromagnetic field which influences the
brain’s overall AMF more effectively
than would be possible by unsynchro-
nized firing.87Moreover, some stud-
ies have suggested that the heart also
produces a magnetic field due to elec-
trical pulses of Purkinje fibers which
may interact with different body tissues
including the brain.88 These magnetic
fields may provide a clue of various
biological effects of the magnetic field
that are still unexplained. Biomedical
application of the magnetic field may
tend to interact with such fields and
lead to an altered response, which can

be either positive or negative.
As a safety measure, it is cus-

tomary to question the patients about
implants, metallic object, condition
of vital organs, and gender-specific
aspects of health to ensure before
MRI examination.89 The same princi-
pal should be extended to any med-
ical applications involving magnetic
field. In addition to questions men-
tioned above, the patients should also
be inquired about his mental health and
cognition if head region is under inves-
tigation, to avoid unnecessary nega-
tive effects on health. Therefore, the
authors stress that well-designed stud-
ies are needed to establish the safety
of such paradigms both in vitro and in
vivo. Precautions and safety measures
should also be adopted to ensure the
safety of patients and healthcare work-
ers in clinical settings.

CONCLUSIONS
Magnetic nanocarriers have found
diverse applications in themedical field
ranging from drug delivery to drug-free
treatment and diagnostic applications.
The ability of the MNPs to align with
the applied magnetic field has enabled
researchers to control the transport of
a variety of nanoparticles filled with
chemotherapeutics which enhances
therapeutic effects and reduces side
effects. Under an AMF, MNP produce
hyperthermia either to cause ablation
or to cause subcellular damage leading
to apoptosis. MFH also increases blood
flow in tumor and enhances MNPs
accumulation. At the same time, MNPs
can be loaded in liposomes and hydro-
gels to degrade the carrier matrix under
MFH ad release the payload at targeted
site.MNP are conjugatedwith targeting
ligands for site-specific accumulation
in the body.

Ligand conjugated magnetic
nanoparticles are also used for the sep-
aration of cells from a heterogeneous
mixture of biological macromolecules
in an immunoassay. Similarly, mag-
netic nanoparticles conjugated to a cat-
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alytic enzyme and allow the removal
of the enzyme at any stage of the reac-
tion. In addition to contrast enhance-
ment in MRI, the flexibility to control
pattern and frequency of MRI has pro-
vided an opportunity to target magnetic
nanoparticles to target tissue, do diag-
nostic imaging and to induce hyper-
thermia after a single administration of
magnetic nanoparticles.

Although generally regarded as safe
for the human body, emerging litera-
ture pointed out the risk of cancer and
a behavioral disease after application
of magnetic field. Extremely low fre-
quency AMF has been associated with
childhood leukemia. Therefore, care
must be taken to restrict future research
to the range of the magnetic field which
is safe for the body. Indeed, the future
of medical applications of the magnetic
field lies in the engineering of multifar-
ious nanocarriers that will allow simul-
taneous diagnosis, thermotherapy, tar-
geted drug delivery, or image-guided
surgery of diseases.
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