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This paper reports synthesis of pure andmixed-phase TiO2 nanopar cles using a sol-
gel techniquewith tanium isopropoxide as a precursor. The prepared sampleswere
then calcined at different temperatures. Varia on in calcina on temperature has
been analyzed on par cle size and crystalline phases, morphology, bandgap, and
crystallinity using X-Ray Diffrac on (XRD), Scanning Electron Microscope-Energy
Dispersive X-Ray Spectroscopy (SEM-EDX), and UV-Vis spectroscopic analysis,
respec vely. Moreover, XRD data reveal anatase and ru le phases of TiO2
depending on the calcina on temperature. From this, one may observe that the
calcina on temperature greatly influences the presence of anatase and ru le
phases of TiO2. It can change the phase from the metastable anatase phase to
the stable ru le phase. Also, increasing the calcina on temperature can increase
the par cle size as es mated by the Scherrer equa on, which was found to be 7
nm to 60 nm with a temperature from 400 ◦C to 1200 ◦C. SEM analysis shows
the growth of spherical-shaped nanoclusters with irregular morphology, whereas
EDX spectroscopic analysis confirms the purity of the samples. It has been observed
that increasing the temperature reduces the bandgap throughUV-Vis spectroscopic
analysis. The photocataly c degrada on of Phenol Red was studied by using
synthesized anatase TiO2 nanopar cles.
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INTRODUCTION

S emiconducting materials have
been extensively investigated to
be used as photocatalysts for

light-stimulated degradation of environ-
mental pollutants due to their suitable
bandgap energies, mainly for the destruc-
tion of toxic and non-biodegradable
compounds.1−3 Among various materi-
als, Titanium dioxide or titania (TiO2)
is an eco-friendly, stable, and low-cost
ceramic material that is widely recog-

nized as an excellent model photocata-
lyst for environmental purification due
to its strong oxidizing ability to cre-
ate photogenerated holes, chemical sta-
bility, and non-toxicity.4−6 TiO2 usu-
ally exists in three crystalline phases,
anatase, rutile, and brookite. Anatase and
rutile are tetragonal, whereas brookite
belongs to the orthorhombic crystalline
system. Rutile is a thermodynamically
stable phase possessing less photoactiv-
ity, enabling it to be used as a pigment
and sunscreens7. In contrast, the brookite
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and anatase phases are metastable
while anatase is more photoactive,
having a bandgap of 3.2eV.4,8,9 How-
ever, its large bandgap doesn’t enable
it to absorb light in the visible region.
Its photocatalytic efficiencycan be
enhanced by tuning the bandgap either
by doping with transition metals or by
strain.10 TiO2 has many applications in
the electronic industry, such as MOS-
FET and gas sensors at high temper-
atures. It has remarkable usage in the
pigment industry due to its high refrac-
tive index (typically 3.87 for rutile and
2.5-3 for anatase). TiO2, when synthe-
sized at the nanoscale, has applications
in dye-sensitized solar cells, produc-
tion and storage of hydrogen, lithium-
ion rechargeable batteries, antibacterial
and self-cleaning ability.3,11 The tem-
perature calcination enables the anatase
phase of TiO2 to be transformed into
brookite and rutile phases.12

The potential of titania is strongly
based on its morphology, crys-
talline structure, and average par-
ticle size.13 The specific surface
area is a critical requirement to
improve the catalytic activity of
TiO2,which certainly depends on par-
ticle size.14 Several methods have
been employed to prepare TiO2 at the
nanoscale15, such as precipitation16,
microemulsion17, hydrothermal18, and
sol-gel19. Amongst all, sol-gel is the
most suitable technique to synthe-
size nanosized metal oxide materials
at low temperatures with high photo-
catalytic activity, homogeneity, and
high purity.6

The sol-gel process modifies a liq-
uid into a solid phase, sol to gel19. The
sol-gel process usually requires the
assimilation of metal alkoxides (sol)
solution into a three-dimensional poly-
mer matrix (gel). Once the precursor
is fully integrated into the matrix, its
polymerization is initiated by water,
which undergoes a hydrolysis reaction
that forms the product upon aging. The
final step is the calcination of colloids
at different temperatures and durations,
which causes the particle agglomer-

ation and usually results in causing
polydispersity. Since the reaction is
the hydrolysis of metal alkoxides, tai-
loring various types of nanoparticles
is possible, while the overall reaction
is simplistic14,20,21.A.K. Tripathi et
al. prepared pure and mixed-phase
TiO2 by sol-gel method calcined at
temperature 400 ◦C to 700 ◦C hav-
ing a particle size between 19 nm to
68 nm.22 Y.-F. Chen et al. obtained
anatase powder possessing a diameter
of 10nm and a specific surface area of
106.9 m2/g when calcined at 400 ◦C
and formed a rutile phase at calcina-
tion temperatures above 600 ◦C.1 H.
Lin et al. synthesized nanocrystalline
anatase TiO2 of particle size ranged
between 12 to 29 nm by the metal-
organic chemical vapor deposition
method (MOCVD). It showed that par-
ticle size plays a crucial role in chang-
ing the bandgap and specific surface
area of photocatalysts.23 Effect of pH
was investigated to alter the bandgap
of titania nanoparticles by the sol-gel
method. The optical analysis reveals
the decrease in bandgapwith increasing
pH.24 Recently, a hydrothermal synthe-
sis route was adopted to synthesize tita-
nia and metal-doped titania nanoparti-
cles. The Ni-doped titania exhibited
excellent photocatalytic activity for
neutral red and methylene blue dyes.25

Moreover, the gold-assisted titania
Au/TiO2 hasalso proven to be a photo-
catalyst for dye degradation as well as
photocatalytic hydrogen generation.26

The present work attempts to demon-
strate the effect of calcination tempera-
ture on crystalline phases, morphology,
and bandgap of TiO2 nanoparticles via
the sol-gel method. To have a clear
understanding of the photocatalytic
activity of anatase TiO2, phenol red
has been used under UV light for the
degradation process.

EXPERIMENTAL SETUP
All reagents, titanium tetra isopropox-
ide (TTIP), and isopropanol were
obtained from Sigma-Aldrich, used

without further purification. Deionized
water was used as the standard solvent
in all experiments.

Synthesis of TiO2
nanopar cles

TiO2 nanoparticles were synthesized
using the most reliable sol-gel method
by hydrolysis of 5 mL solution of
Titanium Tetra Isopropoxide (TTIP),
an organometallic precursor in a 5
mL solution of isopropanol at room
temperature11. The mixture was then
added at a rate of 5 mL/min. in 200 mL
of deionized water resulted in the for-
mation of white colloidal solution and
was stirred vigorously for 2 hours. The
solution was then covered and aged at
room temperature for 24 hours, filtered
to get a white paste, and dried at 90
◦C for 2 hours to evaporate water and
other organic solvents. Figure 1 shows
the flowchart of synthesis methodol-
ogy adopted for the preparation of TiO2
nanoparticles. To improve crystalliza-
tion and observe the effect of calcina-
tion temperature on prepared samples,
the final product was calcined at 400◦C
to 1200◦C for 4 hours in a muffle fur-
nace. The white crystalline powder was
ground using ball milling to obtain fine
particles of TiO2.

Characteriza on of TiO2
nanopar cles

The XRD analysis of the obtained
TiO2 nanoparticleswas recorded using
Bruker D8Advance X-ray diffractome-
ter (Germany), CuKα (λ = 0.15406
nm) radiation operated at 30 kV and
30 mA at room temperature. Quanta
400 FEG Scanning Electron Micro-
scope (USA) was operated at higher
magnification to study the morphology
of prepared samples. UV-1800, UV-
Vis Spectrophotometer, Shimadzu sci-
entific instruments were used in the
range of 300 to 600 nm to study the
optical behavior.
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Figure 1. Flow chart for the synthesis of TiO2 nanoparticles by Sol-Gel route.

RESULTS AND DISCUSSION

X-Ray Diffraction Analysis
The XRD spectra of the obtained

TiO2 nanoparticles are shown in Figure
2 and 3. It can be found that the cal-
cination temperatures greatly affect the
occurrence of anatase and rutile phases
of TiO2. At 400 ◦C and 600 ◦C, the
maximum intensity peak is observed
at 2θ = 25.5◦ for (101) plane, which
corresponds to the anatase phase of
TiO2 crystal with tetragonal structure
(JCPDS 00-021-1272)17. Whereas at
800 ◦C, 1000◦C, and 1200 ◦C, the XRD
peak at 2θ = 27.7◦ for (110) plane gives
evidence of the presence of tetragonal
rutile phase of TiO2 (JCPDS 00-021-
1276)18. At 600 ◦C, the less intense
peaks of the rutile phase appear, which
shows the transformation from anatase
to rutile and is said to be the transition
state of TiO2 nanoparticles. The aver-
age crystallite size

D =
kλ

βcosθ

Where k = 0.89 the shape factor, β is
the full-width at half maxima (FWHM)
in radians and 2d sin(θ) = nλ

The XRD analysis reveals that as
temperature increases from 400 ◦C to
1200 ◦C, the crystallite size varies from
7 to 60 nm. The lattice parameters (a =
b ̸= c) for tetragonal structure are cal-
culated by;

1
d2 =

h2 + k2

a2 +
l2

c2

The XRD parameters, including crys-
tallite size, inter planner spacing, lattice
parameter, c/a ratio, and unit cell vol-
ume for tetragonal crystalline structure
at various temperatures of the strongest
peak, have been listed in Table.1

The X-ray density for the samples
can be calculated by the relation given
below as;

ρ =
nM
NV

Where n = 4 for anatase and n = 2
for rutile, M is the molecular weight,
N is the Avogadro’s number, and V

is the unit cell volume. The bulk den-
sity of the naoparticles increases with
the increase of calcination temperature
from 400 ◦C to 1200 ◦C (Table.1).

Broadening of XRD peaks occurs
when particle size is less than 100
nm27,28. X-ray diffraction peaks show
broadening due to strain when the crys-
tallites are small enough. The strain ε
can be described by the relation;

ε =
β

4tanθ

At different calcination temperatures,
the strain decreases as the particle
size increases. It is already established
that with a reduction in particle size,
a tremendous increase in the surface
area to volume ratio was observed11.
The higher specific surface area of
the anatase phase enables TiO2 to work
efficiently as a photocatalyst9. In the
present study, the specific surface area
was calculated by the relation given
below;

SSA =
6 × 103

D×ρ
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Figure 2. XRD peaks of TiO2 sample calcinated at temperatures (a) 400 ◦C, (b) 600 ◦C , (c) 800 ◦C , (d) 1000 ◦C, and (e)
1200 ◦C.

Table 1. Summary of XRD parameters of TiO2 nanoparticles at different temperatures
Calculated parameters 400 ◦C 600 ◦C 800 ◦C 1000 ◦ C 1200 ◦ C
2θ (deg) 25.502 25.548 27.778 27.644 27.733
FWHM (radians) 0.019 0.009 0.0028 0.0027 0.0023
Crystallite size D (nm) 7.36 15.12 50.24 52.65 60.52
d-spacing d (Å) 3.49 3.48 3.20 3.22 3.21
(hkl) 101 101 110 110 110
Lattice constant (◦ A) a = b = 3.768

c=9.289
a = b = 3.756 c
= 9.317

a = b = 4.538 c
= 2.964

a=b= 4.56 c=
2.959

a=b= 4.545 c=
2.963

Unit cell volume V = a2c
(Å) 3

131.90 131.46 61.05 61.51 61.21

c/a 2.465 2.48 0.653 0.648 0.652
Strain 1.208 0.587 0.163 0.156 0.135
Surface area to volume
ratio (nm−1 )

0.815 0.396 0.119 0.114 0.099

Bulk density, ρ (gm/cm3 ) 4.02 4.03 4.33 4.307 4.32
Specific surface area (m2

/g)
212.85 103.60 28.16 26.87 23.38

Dislocation density
(lines/m2 )

1.85× 1016 4.37× 1015 3.96× 1014 3.61× 1014 2.73× 1014

Where, D is the crystallite size and r is
the density of TiO2.

The length of dislocation lines per
unit volume is defined as dislocation
density which is irregularity as well
as the defects in the crystalline struc-
ture. The larger dislocation density
indicates the hardness of the material.
Beyond 600 ◦C, the volume fraction

of the anatase phase decreases upon
heating, revealing the transformation
of phase from anatase to rutile. From
the calculation of dislocation densi-
ties, one can define the transformation
of phase depending on size. As the
size increases, the dislocation density
decreases. The dislocation density is

obtained by using the formula:

δ =
1

D2

Stoichiometry and
morphology analysis
Energy Dispersive X-ray spectroscopy
(EDX) pattern of TiO2 nanoparticles is
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Figure 3. Graph from XRD data illustrates the relation between temperature and (a) particle size, (b) strain, (c) SSA (d)
dislocation density.

Figure 4. (a) EDX pattern of TiO2 nanoparticles, SEM images of TiO2 samples calcinated at different temperatures (b) 400
◦C (c) 600 ◦C (d) 800 ◦C (e) 1000 ◦C, and (f) 1200 ◦C
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Table 2. Energy Dispersive X-Ray (EDX) data of TiO2 nanoparticles
Sample Element Wt % At %

TiO 2

Oxygen 38.56 65.26
Titanium 61.44 34.74
Total 100.00 100.00

shown in Figure 4(a), and the chemical
composition in wt.% is listed in Table
2. The results validate the high purity
of nanoparticles being synthesized.

SEM images of the sample were car-
ried out to estimate the growth and
surface morphology of the sample.
The grains are spherically shaped with
uniform size distribution and irreg-
ular distribution in nanoclusters for
all temperatures. As the calcination
temperature increases, the grain size
increases as the particles agglomerate.
Figure 4(b-f) shows the SEM images of
TiO2 nanoparticles at different temper-
atures.

Op cal proper es
The bandgap energy (Eg) of
TiO2 nanoparticles can be calculated
using the following equation;

(αhvn) = B(hv−Eg)

where hn is the photon energy, B is
a constant, n depends on transition
(n= 2/3 for directly forbidden gap, 2
for direct bandgap, and 1/2 for indi-
rect bandgap), and a is the absorption
coefficient. The absorption coefficient
(a) was determined by Beer-Lambert’s
relation.

α =
2.303A

d

Where, A is the absorbance from UV-
Vis data and d is the path length
of the cuvette. At higher calcina-
tion temperature, the sample illus-
trates redshifts due to induced oxy-
gen vacancies which create defects.
Absorbance curves of nanoparticles at
various calcination temperatures are
shown in Figure 5(a). The tauc plot of
(αhν)1/2 versus (hν) gives the band
gap energy of TiO2 nanoparticles (Fig-
ure 5(b)). The bandgap energy of the

sample calcined at 400 ◦C is found to
be 3.44 eV, whereas bulk anatase has a
bandgap energy of 3.21 eV and is found
to be 2.86 eV calcined as 600 ◦C, as
displayed in Figure 5(c). In nanoscale,
as the particle size reduces, the num-
ber of overlapping orbitals gets nar-
rower; as a result, the width of the
bands decreases. Ultimately, the gap
between the valence and conduction
bands increases, which increases the
bandgap. As temperature increases, the
particle size increases, and the bandgap
decrease, as reported in literature29,30.
The bandgap energy of rutile is 2.38
eV, 2.17 eV, and 2.04 eV at 800 ◦C,
1000 ◦C, and 1200 ◦C, respectively.
At higher calcination temperatures, the
crystallites are larger in size; hence,
their optical band gap decreases, sup-
porting photo generation.31

Photocataly c ac vity of anatase
TiO2 synthesized at 400 ◦C

The photocatalytic activity was carried
out in a cylindrical Pyrex-glass beaker
with a 1.0 L capacity. A 125-W mer-
cury lamp as an ultra-violet light source
was placed just above the beaker, which
was filled with 0.6 L of 6 mg/L of
Phenol Red solution and 40 mg/L of
nanoparticles of TiO2-400 ◦C photo-
catalyst. The whole beaker was cooled
with an electric fan from outside the
beaker, and the test was carried out at
room temperature while fresh air bub-
bles were introduced into the suspen-
sion using a pump. The degradation of
model pollutant phenol Red was mon-
itored by taking 5 ml of the suspen-
sion at the irradiation time intervals of
1 hour. Each time the suspension was
centrifuged to separate the photocata-
lyst particles from the phenol red solu-
tion. Subsequently, the degradation rate
was calculated according to the change

in absorbance of the dye solution.
The absorption spectra of the sam-

ples were recorded by measuring the
absorbance at 435 nm corresponding
to themaximum absorption wavelength
of Phenol red with a UV–Vis absorp-
tion spectrophotometer. The concentra-
tion of Phenol Red is proportional to the
absorbance of Phenol Red according to
the Beer-Lambert law, so the degrada-
tion efficiency of Phenol Red can be
calculated by

R =
Co−C

Co
×100% =

Ao−A
Ao

×100%

Where Ao, A, and Co, C are the
absorbance and concentration of Phe-
nol Red when the reaction time is 0 and
t, respectively. Figure 6 shows grad-
ual photo decolorization of the pol-
luted solution; the initial concentration
of dye 0.949 decreases to 0.304 after 1
hour of irradiation, which offers 68%
degradation, and over one more hour of
irradiation, it reduces to 0.249, which
results in further degradation of 18%.
Hence, TiO2 sintered at 400 ◦C pos-
sesses an anatase phase with excellent
photocatalytic activity.

CONCLUSIONS
Titanium dioxide nanoparticles were
successfully prepared using a sol-
gel technique with titanium tetraiso-
propoxide (TTIP) as a precursor. The
effect of calcination temperature on
the phase transformation of TiO2 was
observed. When the temperature is
raised to 700 ◦C and 800 ◦C, the
anatase phase begins to transform into
a rutile phase. The increased calcina-
tion temperatures enhance the crystal-
lite size from 7 nm to 60 nm, decreas-
ing the strain and specific surface area
to some extent. Tuning of bandgap as a
function of calcination temperature was
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Figure 5. (a) Absorbance curve of TiO2 nanoparticles at different calcination temperatures, (b) Tauc plots of TiO2 samples,
(c) variation of bandgap with increasing temperature

Figure 6. UV-Vis spectra changes of Phenol red (6 mg/L) in aqueous nano TiO2 dispersion (40 mg/L) irradiated under UV
light at a varying time at 0, 1, and 2 hours. Inset shows the normalized absorbance at 435 nm.

observed from tauc plots. The SEM-
EDX results showed the purity, chem-
ical composition, and morphology of
TiO2 nanoparticles. The photocatalytic
test was carried out, which degraded
the model pollutant Phenol Red up to
a great extent. In summary, the sin-
tering temperature dramatically influ-
ences the phase stability and transfor-
mation of titanium dioxide nanoparti-
cles, and an anatase phase acts as an
outstanding photocatalyst.
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